
PROTECT YOUR JAVA CODE FROM SECURITY ATTACKS!

APRIL 2004 VOLUME:9 ISSUE:4

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E W W W . S Y S - C O N . C O M / J D J

RETAILERS PLEASE DISPLAY
UNTIL JUNE 30, 2004

DAVID SKOK
General Partner,
Matrix Partners

JD
J

N
o
.1
!

HIGHEST DIGITA
L C

IRCULA
TION

IN
 T

HE
W

ORL
D!

S
EE P

A
G
E 6

3

FO
R
 D

ETA
IL

S

DAVID SKOK General Partner, Matrix Partners

Investing in
‘Professional
Open Source’

The ‘United Nations’
of the i-Technology World?
EXCLUSIVE INTERVIEW:

Dale Fuller
of Borland Speaks Out

Escaping Swing’s Limitations
The Perils of Copy-Paste Coding

Plus...

SPECIAL:

See page 44

Feature:

Techniques:

performance. And you ll be left facing increasing development, maintenance and testing costs plus potential
loss of revenue. DataDirect offers the industry's most comprehensive, proven suite of database-independent Type 4
JDBC drivers. Our extensively tested J2EE-certified drivers include the most advanced JDBC 3.0 features including
Distributed Transaction Support, Connection Pooling and BLOB/CLOB support.
DataDirect Connect® for JDBC® is the SPECjAppServer and ECperf performance leader.

www.datadirect.com
800-876-3101

DataDirect Connect is a registered trademark of DataDirect Technologies. JDBC is a registered trademark of Sun Microsystems, Inc. in the United States and other countries. DataDirect Technologies is independent of Sun Microsystems, Inc. All other trademarks are the property of their respective owners.

Find out what else you might be missing. Download our whitepaper,
"What you don't know about database drivers CAN hurt you" @ www.datadirect.com/JDJ

PRODUCTIVE DEVELOPERS • SUCCESSFUL PROJECTS • EMPOWERED USERS

WEB: http://www.ReportingEngines.com

EMAIL: sales@ReportingEngines.com

TEL: 913-851-2200 • 888-884-8665
FAX: 913-851-1390

30
DAY TRIALS

F R E E

Copyright © 2004 ReportingEngines (a division of Actuate Corporation). All rights reserved. Formula One is a registered trademark of Actuate Corporation.
Java and Java-based trademarks and logos are the trademarks or registered trademarks of Sun Microsystems Inc., in the United States and other countries. All other trademarks are property of their respective owners. All specifi cations subject to change without notice.

unlimited end users

unlimited projects

unlimited server CPUs

Embeds Into and Leverages J2EE Environments!
No Limits on IDEs or Application Servers!

unlimited productivity

unlimited data access

unlimited report output

bUILD JAVA
REPORTS

 with no
limits

Enterprise Reporting Toolsets for Java Projects & Portals

Most Flexible License! Extraordinary Value!
No Limits on Savings for Development Teams!

formula one e.report engine (Embed PDF, HTML, DHTML, and XML Reports in jsp and servlets)
Build reports against Java objects, JDBC, and XML. No report server to set up or maintain.

formula one e.report engine for weblogic workshop (access liquid data as a data source)
All the power of the regular e.Report Engine as a fully integrated BEA Workshop Extension.

BEA PORTAL REPORTING SOLUTIONS (POWERED BY THE FORMULA ONE E.REPORT ENGINE)
Visually build reports against BEA Portal Event and Behavior Tracking Data.

formula one e.SPREADSHEET engine (100% PURE JAVA TOOL FOR BUILDING FINANCIAL APPLICATIONS)
Excel reporting. Excel-like data grids. Server-side calculation and business rules engine.

5April 2004www.SYS-CON.com/JDJ

LABS

UltraLightClient
by Canoo Engineering AG
Reviewed by Peter Leitner.................................56

LABS

RetroVue 1.1
by VisiComp, Inc.
Reviewed by Klaus Berg.................................60

JSR WATCH

From Within the Java
Community Process Program
The ‘groovy’ JSR
by Onno Kluyt.................................64

@ THE BACKPAGE

MAX: A Java-Based
Personal Robot Platform
by Paul J. Perrone.................................66

CACHING MECHANISMS

Scalability of J2EE Applications
Effective caching
by Stefan Piesche.................................24

TOOLS AND TECHNIQUES

Evolving the JRE
...from a managed runtime to a
manageable runtime
by Stuart Lawrence and Bob Griswold.................................30

TECHNIQUES

The Perils of Copy-Paste Coding
by Paul Mukherjee
Three approaches that help make it work.................................40

DESKTOP JAVA VIEWPOINT

Fine Grains Choke the Client
by Joe Winchester.................................50

FROM THE PUBLISHER

Where Are They Now?
Summer ’99
by Fuat Kircaali.................................6
FROM THE EDITOR

Looking for Instant Solutions?
by Joseph Ottinger.................................8
JAVA ENTERPRISE VIEWPOINT

The Commercialization
of Open Source
by Kirk Pepperdine.................................10
SOA

Service-Oriented Architecture
Beyond Web services
by Ted Farrell.................................12
JAVA & XML

Using JAXB in
Enterprise J2EE Applications
Incorporate XML data
and processing functions Part 1
by Tilak Mitra
.................................16

ccoonntteennttss
APRIL 2004 VOLUME:9 ISSUE:4

Special Feature

Features

Strategies for Securing Java Code
by Adam Kolawa, Gina Assaf,

and Roberto Scaramuzzi

Cover Story: Exclusive

Borland’s Dale Fuller

The ‘United Nations’ of
the i-Technology World?

Interview by Jeremy Geelan

44

Escaping Swing’s Limitations
When Drawing Graphs
by David Shay and John Hutton

52

Java Developer’s Journal (ISSN#1087-6944) is published monthly
(12 times a year) for $69.99 by SYS-CON Publications, Inc.,
135 Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage
rates are paid at Montvale, NJ 07645 and additional mailing offices.
Postmaster: Send address changes to: Java Developer’s Journal,
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

JDJ Industry Profile...

34
20

DAVID
SKOK

DAVID
SKOK

GENERAL PARTNER,
MATRIX PARTNERS

by Jeremy Geelan

6 April 2004 www.SYS-CON.com/JDJ

he first time I read Mike Wilson’s
book, The Difference Between
God and Larry Ellison: *God
Doesn’t Think He’s Larry Ellison,

during the summer of 1999, technolo-
gy IPOs and dot.coms were at their
peak, not to mention Greenspan’s irra-
tional exuberance.

I read through half the book one
night, then placed a bookmark at the
spot where the founders of Oracle –
Larry Ellison, Bob Miner, and Bruce
Scott – were moving into their first
Oracle office, and Ellison and Scott were
dashing a hole in the wall to get the
wires through.

We had three editorial meetings
scheduled the next day at SYS-CON.
Our first meeting was with a newly
formed company called PointBase. Our
guests arrived on time and we
exchanged business cards. When I
looked at the names on the business
cards, I realized the first one read Bruce
Scott, founder and CEO, PointBase.
Bruce and I both looked at the book
lying on my desk. I said Bruce Scott, as
in the cofounder of Oracle? He smiled
and said yes. We talked about the bro-
ken wall a little bit before we continued
with our meeting. :-)

I had the privilege of meeting with
and hosting some of the makers and
shakers of the software industry that
summer. Java was hot and JDJ was
right in the middle of the action.
CNBC was “on” 24 hours in our office;
more than half of the SYS-CON team
was busy day trading. We watched
Wall Street legend Harvey Houtkin,
the chairman and chief executive offi-
cer of a day trading firm, on CNBC for
several weeks after nine of his
employees were killed in Atlanta.

During the summer of ’99, JDJ was
in its fourth year of publication. I
recall receiving a phone call from the
youngest contributing writer of our
first issue; he told me that he was tak-
ing his Web site public and asked if we
wanted to partner with him. As much
as I tried, I couldn’t take his call seri-
ously but we saw him on CNBC soon
after. His then publicly traded Web site
was worth as much as $600 million in
the summer of ’99.

Another memorable meeting that
summer was with SilverStream
Software. Back then we were in a
small, not-easy-to-find Irish town –
Pearl River, New York. Our meeting
took place not even one week after
their very successful IPO. We met with
the founder of the company, David
Skok. My first enthusiastic question to
him was “How was the road show,
David?” I recall him saying “the road
show was very exciting but exhausting
at the same time. We did presentations
in Zurich, London, New York, and San
Francisco on the same day.” (I think he
said “the same day.”)

I don’t know why but the summer of
’99 reminds me a lot of the Summer of
’42, my favorite movie during my
teenage years. All I know is that the next
summer would be nothing like the sum-
mer of ’99 and it hasn’t really gotten
much better since then.

On a Friday morning, April 14, 2000, I
ran into our next-door neighbor, Jack
Martin, at the coffee shop under SYS-
CON’s offices. “How is the IPO coming
along?” I asked. Jack answered “The
party is over. That’s it. Done. Ce fini.” I
didn’t realize that Wall Street would
experience its biggest one-day fall in
history, ending a week in which U.S.
markets lost $2 trillion in value — the
equivalent to Germany’s entire econo-
my. Worst hit was NASDAQ, the stock
exchange favored by high-tech compa-
nies such as Microsoft. Bill Gates saw
his personal fortune drop $30 billion in
a few hours…and Amazon.com and
other famous e-commerce companies
started laying off staff.

So“where are they now?” Well, I
stayed in touch with Bruce Scott, and
consider him a friend. I don’t know
what happened to our youngest con-
tributing writer; I hope he kept all or
at least some of his money. I became
good friends with my neighbor Jack
Martin and a good neighbor of Wall
Street legend Harvey Houtkin. I was
wondering where David Skok was
until we read about his $10 million
funding of JBoss last month and found
him. :-) I’m sure you’ll enjoy Jeremy
Geelan’s exclusive interview with
David in the pages of this issue.

FROM THE PUBLISHER

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Fuat Kircaali

Where Are They Now?
Summer of ’99

T

International Advisory Board
CCaallvviinn AAuussttiinn (Sun)

JJaassoonn BBeellll (Independent)
JJaassoonn BBrriiggggss (Independent)

Jeerreemmyy GGeeeellaann (SYS-CON)
TThhoorrsstteenn LLaauuxx (Sun)
RRiicckkaarrdd ÖÖbbeerrgg (Independent)

JJooee OOttttiinnggeerr (Independent)
BBiillll RRootthh (E.piphany)

AAjjiitt SSaaggaarr (Independent)
EErriicc SSttaahhll (BEA)

JJoonn SStteevveennss (Apache)
AAaarroonn WWiilllliiaammss (JCP)

AAllaann WWiilllliiaammssoonn (SYS-CON)
JJooee WWiinncchheesstteerr (IBM)

BBllaaiirr WWyymmaann (IBM)

Editorial
Editor-in-Chief: JJoosseepphh OOttttiinnggeerr
Editor-at-Large: AAllaann WWiilllliiaammssoonn

Executive Editor: NNaannccyy VVaalleennttiinnee
Java Enterprise Editor: KKiirrkk PPeeppppeerrddiinnee

Desktop Java Editor: JJooee WWiinncchheesstteerr
Gaming Editor: JJaassoonn RR.. BBrriiggggss

Contributing Editor: AAjjiitt SSaaggaarr
Contributing Editor: GGlleenn CCoorrddrreeyy
Contributing Editor: JJaassoonn BBeellll

Founding Editor: SSeeaann RRhhooddyy

Production
Production Consultant: JJiimm MMoorrggaann
Associate Art Director: TTaammii BBeeaattttyy

Associate Editors: JJaammiiee MMaattuussooww
GGaaiill SScchhuullttzz
JJeeaann CCaassssiiddyy
JJeennnniiffeerr VVaann WWiinncckkeell

Assistant Editor: KKeellllyy FFllyynnnn
Online Editor: LLiinn GGooeettzz

Research Editor: BBaahhaaddiirr KKaarruuvv,, PPhhDD

Writers in This Issue
Gina Assaf, Klaus Berg, Ted Farrell, Jeremy Geelan,

Bob Griswold, John Hutton, Onno Kluyt,
Adam Kolawa, Stuart Lawrence, Peter Leitner,
Tilak Mitra, Paul Mukherjee, Joseph Ottinger,
Kirk Pepperdine, Paul Perrone, Stefan Piesche,

Roberto Scaramuzzi, David Shay, Joe Winchester
To submit a proposal for an article, go to

http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department subscribe@sys-con.com.
Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)

Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or
Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly
(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2004 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Carrie Gebert, carrieg@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

8 April 2004 www.SYS-CON.com/JDJ

President and CEO:
FFuuaatt KKiirrccaaaallii fuat@sys-con.com

Vice President, Business Development:
GGrriisshhaa DDaavviiddaa grisha@sys-con.com

Group Publisher:
JJeerreemmyy GGeeeellaann jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

CCaarrmmeenn GGoonnzzaalleezz carmen@sys-con.com
Vice President, Sales and Marketing:
MMiilleess SSiillvveerrmmaann miles@sys-con.com

Advertising Sales Director:
RRoobbyynn FFoorrmmaa roybn@sys-con.com

Director, Sales and Marketing:
MMeeggaann RRiinngg megan@sys-con.com

Advertising Sales Managers:
AAlliissaa CCaattaallaannoo alisa@sys-con.com
CCaarrrriiee GGeebbeerrtt carrieg@sys-con.com

Associate Sales Managers:
KKrriissttiinn KKuuhhnnllee kristin@sys-con.com

BBeetthh JJoonneess beth@sys-con.com

Editorial
Executive Editor:

NNaannccyy VVaalleennttiinnee nancy@sys-con.com
Associate Editors:

JJaammiiee MMaattuussooww jamie@sys-con.com
GGaaiill SScchhuullttzz gail@sys-con.com
JJeeaann CCaassssiiddyy jean@sys-con.com

JJeennnniiffeerr VVaann WWiinncckkeell jennifer@sys-con.com
Online Editor:

LLiinn GGooeettzz lin@sys-con.com

Production
Production Consultant:

JJiimm MMoorrggaann jim@sys-con.com
Lead Designer:

TTaammii BBeeaattttyy tami@sys-con.com
Art Director:

AAlleexx BBootteerroo alex@sys-con.com
Associate Art Directors:

LLoouuiiss FF.. CCuuffffaarrii louis@sys-con.com
RRiicchhaarrdd SSiillvveerrbbeerrgg richards@sys-con.com

Web Services
Vice President, Information Systems:
RRoobbeerrtt DDiiaammoonndd robert@sys-con.com

Web Designers:
SStteepphheenn KKiillmmuurrrraayy stephen@sys-con.com
CChhrriissttoopphheerr CCrrooccee chris@sys-con.com

Accounting
Financial Analyst:

JJooaann LLaaRRoossee joan@sys-con.com
Accounts Receivable:

CChhaarrlloottttee LLooppeezz charlotte@sys-con.com
Accounts Payable:

BBeettttyy WWhhiittee betty@sys-con.com

SYS-CON Events
President, SYS-CON Events:

GGrriisshhaa DDaavviiddaa grisha@sys-con.com
Conference Manager:
LLiinn GGooeettzz lin@sys-con.com

Customer Relations
Circulation Service Coordinators:

SShheelliiaa DDiicckkeerrssoonn shelia@sys-con.com
EEddnnaa EEaarrllee RRuusssseellll edna@sys-con.com

LLiinnddaa LLiippttoonn linda@sys-con.com
JDJ Store Manager:

BBrruunniillddaa SSttaarrooppoollii bruni@sys-con.com

here is no magic bullet.
Managers and developers alike
have a tendency to look for a
simple, one-shot solution to

address a series of complicated issues,
even while we all acknowledge that
there is no philosopher’s stone. That
fails to stop us, though – the search
continues for some mythical fountain
of ability (located in Florida or India,
surely) against all applications of rea-
son and sanity. Unfortunately, there’s
no replacement for actually rolling up
your sleeves as appropriate for your
current project.

In the end, every magic solution fails
under the stress of reality: no project
manages to fit itself into a given solu-
tion. It’s the solution’s responsibility to
be flexible enough to compensate for
the problem space.

Personal bias is inevitable, unfortu-
nately. It’s unrealistic to remove the
developer from the solution, and just as
unrealistic to pretend that the biases
don’t affect what the developer creates.
Someone who’s successfully used
Hibernate for persistence tends to
always think Hibernate’s appropriate
until shown otherwise, often through
drastic failure. Likewise, someone who’s
had a failure with EJB tends to feel that
EJB is inappropriate, even after being
assigned to a project for which EJB is a
good match. Few developers are able to
correctly anticipate when conditions
have changed in such a way as to con-
trovert their own experiences.

Just as solutions aren’t able to magi-
cally fit themselves into a problem,
developers aren’t able to do so either.
Very rarely is a given hire – whether it’s
of a single developer or a group of
developers – going to correct a project’s
problems, or yield a solution that
involves no commitment. Even more
rarely is a purchase going to make that
kind of difference.

In my opinion, the best the industry
has in terms of great solutions are tools
like IDEA, Ant, Optimizeit, and a few

others. The hallmark of all of these is
that they are not solutions themselves.
All are related to the creation of tuned
solutions. Even more, none fit into the
“popular product” mindset occupied
by APIs and products like Hibernate or
EJB, AspectJ or XDoclet, Struts or
WebWork. All are one layer removed
from those products, which work…but
fail in the “magic bullet” category.

Solutions tend to be general in
nature, such as “manage a bank
account” or “process a new policy.”
These are amorphous concepts, things
with potentially very complex use cases
(especially for general use, as you have
to anticipate how all users will vary
processes). As a result, it’s horrifically
difficult to get all of the nuances right,
and I think even casual users can
detect the assumptions made by devel-
opers and analysts.

The products I like are luckier;
they’re much simpler. Note that I didn’t
include products I use all the time in
varying capacities: Eclipse isn’t there
because it’s trying to be a platform and
not just an IDE, and it shows – jack-of-
all-trades, master of none. Same for
NetBeans, with more emphasis on the
platform side of things. JBuilder is an
excellent development environ-
ment…but it, too, suffers from
Borland’s mindset, although parts of
the suite – such as Optimizeit – are
excellent and highly recommended.

The final result is that no one is going
to able to solve everything without put-
ting in time and effort. No product will
suddenly solve your problems, no mat-
ter what the advertising (or résumé!)
says; prior experience simply isn’t valid
as an indicator for current issues. What
you should look for is a person – not a
tool – who understands that every solu-
tion is unique and is good at creating
solutions, as opposed to someone who
spends his or her time flaying the same
historical data over and over again.
There is no magic bullet – but there are
people who are good shots.

FROM THE EDITOR

Joseph Ottinger is a consultant
with Fusion Alliance

(www.fusionalliance.com)
and is a frequent contributor

to open source projects in
a number of capacities.

Joe is also the acting
chairman of the JDJ

Editorial Advisory Board.

josephottinger@sys-con.com

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Looking for Instant Solutions?

T

Joe Ottinger
Editor-in-Chief

Leaner, Meaner, Faster Java Development.

Take a test flight today: Sit down, buckle up and hang on at go.borland.com/ j3

Made in Borland® Copyright © 2004 Borland Software Corporation. All rights reserved. Java and all Java-based marks are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All Borland brand and product names are trademarks or
registered trademarks of Borland Software Corporation in the United States and other countries. • 21431

Borland
®

JBuilder
®

Developer, from the #1 Java IDE company in the world. It's all the power you crave. Yet
lightweight and agile. At a price that won’t leave you grounded. Automate the routine stuff. Handcraft the unique.
Blast through every stage of the process, with more bullet-proof results. Whether your app is headed to the desktop,
Web, or mobile, Borland JBuilder Developer gets you up and going fast. And lands the product flawlessly.

• Customizable code editor with CodeInsight™ and ErrorInsight™ • Import project source from any IDE or editor • Two-way visual Struts designer • JSP™

Tag Library/framework support • Local and remote servlet/JSP debugging • XML and database tools • Develop, debug and deploy mobile applications
• Integrated unit testing • Advanced build and configuration management with Apache™ Ant • Archive builder • OpenTools API

10 April 2004 www.SYS-CON.com/JDJ

e’ve all heard the news: JBoss
has received $10 million in
funding and now it’s time to
sit back and mull it over.

Without a doubt this infusion of capital
is a signal of confidence for JBoss
Group. But is this investment a good
thing for open source? Not an unimpor-
tant question for those of us who have
decided to use open source in our
enterprise applications. If organizations
are just now deciding to use open
source, this announcement could cause
them to rethink their decision and
weigh the possibility that their choice
may not be so open as it has been. We
do have a few exemplars that we can
draw from to help us understand what
could happen. The most obvious are
IBM alphaWorks, the Apache
Foundation, and the various Linux ven-
dors, some of whom have IPOed.

alphaWorks is home to a number of
open source projects. We don’t hear
about this IBM-funded effort as much
as we used to because many efforts
have simply taken a back seat to Eclipse
in the media. Another reason is that
many of the Java projects have been
donated to the Apache Jakarta project.
Even so, it continues to act as an incu-
bator while being funded by IBM.

The fact that Apache receives a signifi-
cant portion of its funding and support
from Collabnet is neither highly publi-
cized nor used in marketing efforts.
Apache’s branding has developed organi-
cally. Aside from the number of high-
quality offerings (donated by IBM and
others), much of the respect that Apache
enjoys is due to Collabnet. Being backed
by Collabnet has given businesses enough
trust in the viability of Apache that they
are willing to base critical business appli-
cations on Apache technology. Because of
this, Apache has been a big win for Sun,
IBM, O’Reilly, Oracle, Borland, and others.

What of open source projects that
don’t enjoy this level of support? Is
JBoss a viable option for businesses
without the backing of a group such as

Apache or the JBoss Organization?
Could Linux be where it is today with-
out the efforts of companies such as
Red Hat? What does all of this say about
the future of open source projects? Will
the companies that are supporting open
source continue to do so once they face
real pressure from investors? Will peo-
ple be willing to donate their time to
open source projects knowing that oth-
ers will be profiting from their efforts?

There is no doubt that the JBoss proj-
ect enjoys a large grass roots following.
The difference between the JBoss
Organization and Apache is that the
JBoss founders have been much more
vocal about their efforts than Apache has
been. In addition to the attention that

this loud chest thumping has attracted, it
has also made some people nervous
about the future of the JBoss project.
There is no question that JBoss products
will survive. This infusion of capital all
but ensures a healthy future for them.
The question is: What form will that
future take if the principal sponsors of
the project are now off trying to satisfy
those who provided this capital?

It is conceivable that under the limited
GPL license, future development on
JBoss will occur in a totally commercial-
ized context. Will we see two versions of
JBoss: one open source and another for
those who are willing to ante up licensing
fees? Will documentation and support
only be doled out to those who are will-
ing to pay? Not according to Marc Fleury.
Fleury has the personality and attitude
that was needed to bring JBoss to this
level. He seems to know when to thumb
is nose at the establishment and when to

pull back. As long as Fleury is in control, I
expect he will keep his word and JBoss
will remain as it is. The question is: How
long can Fleury maintain control?

In an article published on CNet (June
2, 1999) just after Red Hat announced
that it had filed for an IPO, an analyst
raised the question, “If a company such
as VA or Red Hat went public and made
a lot of money off of Linux, what does
that mean for all those people who’ve
done a lot of work and don’t necessarily
make money out of it? Will they still
want to contribute to Linux?” A quick
survey of the Fedora (a project to build
a complete OS from free software) IRC
channels showed that more than 300
people were signed onto #fedora and
120 where signed onto #fedora-devel.
More important, there were people
engaging in dialogue while trying to
advance the development of this open
source project. While these numbers
don’t rival the thousands that partici-
pate in projects like Ant, it still appears
to be a healthy vibrant community
working toward a common goal.

It’s unclear how many of the people
who have contributed to Red Hat’s suc-
cess have been compensated for their
efforts. The JBoss Group has made a
concerted effort to compensate people
who have contributed to the JBoss proj-
ect. The recent hiring of Gavin King illu-
minates the group’s efforts to continue
to support Professional Open Source,
that is open source software developed
by professionals earning a living from
the product that they are contributing
to. Is this any different than what Sun,
IBM, and others have been doing with
their support of Apache Jakarta?

Only time will tell if the JBoss Group
can successfully transform themselves
from a group of developers working on
an open source project into a viable com-
mercial enterprise. Or if JBoss as an open
source product will remain viable and
not be consumed by JBoss, the commer-
cial enterprise. If history has anything to
say, they should be able to pull it off.

Kirk Pepperdine is the
chief technical officer at

Java Performance Tuning.com
and has been focused on
object technologies and
performance tuning for

the last 15 years. Kirk is a co-
author of Ant Developer’s

Handbook (Sams).

kirk@javaperformancetuning.com

Kirk Pepperdine
Java Enterprise Editor

The Commercialization of Open Source

W

JAVA ENTERPRISE VIEWPOINT

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

12 April 2004 www.SYS-CON.com/JDJ

hances are you’ve heard the term
service-oriented architecture
(SOA). It describes a software
architecture in which reusable

services are deployed onto application
servers and then consumed by clients in
different applications or business
processes. If you’ve tried to find infor-
mation on SOAs, the chances are also
good that you found a description that
includes Web services, often exclusively.
This might have led you to the conclu-
sion that if you aren’t using Web servic-
es, you have no need for SOAs. This
couldn’t be further from the truth.

The problem starts with the defini-
tion. SOAs are designed to decouple the
implementation of a software service
from the interface that calls that service.
This allows clients of a service to rely on
a consistent interface regardless of the
implementation technology of the serv-
ice. Instead of building big, monolithic
applications, developers can build more
agile services that can be deployed and
reused across an organization for differ-
ent applications and processes. This
allows for better reuse of software func-
tionality, as well as for increased flexi-
bility because developers can evolve the
implementation of a service without
necessarily affecting the clients of that
service.

To this end, the main requirement of
an SOA is that the interface to the ser-
vices is decoupled from the implemen-
tation. When you hear this description
it might remind you of another technol-
ogy that is discussed a lot: Web services.
Web services allows access to a diverse
set of functionality through a standard
protocol-and-interface definition. Web
services and service-oriented sound like
the same thing, but they’re not.

SOAs and Web Services
Today’s examples of SOAs are mainly

in the business process area. These
applications are focused on building
business process flows where several
services are used in conjunction to
accomplish a larger task. These process-
es also require data transformation as

different types of data are taken from
one service and sent to another service
in the flow. In this example, Web services
are often used as the services in the
process. Web services provide a good
mechanism to communicate with a
diverse set of technologies that would be
much harder to integrate without them;
however, a problem arises when a devel-
oper needs to add a non–Web service
service to a business process that also
contains Web services. To handle this
case, either the client has to code to mul-
tiple interfaces, or the developer needs
to add an abstraction layer that shelters
the client from the differences in the
service interfaces and implementations.
This abstraction layer is known as a ser-
vice-oriented interface (SOI). In the case
where all of the services in the process
are Web services, the Web service inter-
face is the service-oriented interface.

Web services are one example of an
SOI. The problem with using Web ser-
vices exclusively in a service-oriented
architecture is that developers have to
wrap any functionality they want to
expose as a Web service. This makes
sense in cases where the service is built
using a foreign technology or is supplied
by a different vendor, but ideally you
would try to avoid the overhead of pack-
ing and unpacking data into XML for
services running on the same infrastruc-
ture. However, because Web services are
one of the few standardized examples of
an SOI, they are often assumed to be the
only choice when building an SOA.

Beyond Web Services
A non–Web service example of an

SOI can be found in the Java Specifica-
tion Request (JSR) 227. JSR 227 is a

standard data-binding and data-access
facility for J2EE. The goal of JSR 227 is to
abstract the implementation of a data
source from a client looking to take that
data and bind it to a user interface.
Whether you’re displaying data from a
database, Enterprise JavaBean (EJB),
legacy system, Web service, or plain old
Java object, the interfaces and data are
the same.

This is shown in the “Model Layer”
in Figure 1. By providing a consistent
interface to any business service, the
model layer is implementing an SOI.
The functionality provided in any SOI
really comes down to the required
information. For example, the model
layer in Figure 1 doesn’t necessarily
have to provide full access to all fea-
tures and functionality of the business
service that it represents. Instead it
just needs to provide enough func-
tionality for clients to successfully
bind that data into user interfaces and
then manipulate it.

Inside an SOA
Taking a closer look at how this is

done leads us to the DataControl. The
job of the DataControl in the model
layer is to abstract the implementation
of the business service from the client,
as well as to act as a mediator between
the client and that business service. The
DataControl API describes certain func-
tionality of the business service that the
developer wants to expose. For all of
this to work, the DataControl needs to
expose this information in an imple-
mentation-neutral manner. Regardless
of the implementation of the business
service, the description is the same.

It’s worth highlighting why a
DataControl was chosen over a Web
service as the interface for the data-
binding SOI. Using an SOI that is
focused on a specific job dramatically
increases its viability, performance, and
acceptance. For example, while Web
services typically run on the server, the
DataControl runs on the client because
that’s where the data will be displayed
and changed. The DataControl can also

Service-Oriented Architecture
Beyond Web services

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

SOA

by Ted Farrell

C

Ted Farrell is architect and
director of strategy for

Application Development Tools
at Oracle Corporation.

He is responsible for the
technical and strategic direction

of Oracle’s development tools
products, including Oracle

JDeveloper 10g, Oracle’s Java
and XML Integrated

Development Environment (IDE)
for J2EE applications, and Web

services development.

ted.farrell@oracle.com Figure 1 The service-oriented interface

Swing Browser Wireless

.......................Data Control..........................

WS DC EJB DC Java DC

Swing Browser Wireless

Model Layer

Business Services

14 April 2004 www.SYS-CON.com/JDJ

represent multiple kinds of services and
does not need to package the data as
XML in order to send it to the client, as
it’s already running on the client. Also,
while a Web service is designed for call-
ing operations on services, the
DataControl can also access attributes,
which is a very common way to display
data in a user interface. Trying either to
change the data-binding architecture or
bend Web services in order for them to
meet the requirements of the data-
binding SOI would have been the wrong
decision. Using an SOI that’s designed
for a specific task allows developers to
get the advantages of an SOA without
having to sacrifice the design, perform-
ance, or ease-of-use to get there.

Let’s get back to the DataControl. The
DataControl is able to abstract the
implementation of the business service
by breaking things down into a common
form. In this case, that common form is
a set of attributes and operations. Any
business service has zero or more attri-
butes and operations. Attributes are
simple setXX and getXX methods that
conform to the standard JavaBean pat-
tern. An operation can be any other
method on the business service and can
take parameters and return values. The
DataControl also describes the data that
is returned from an attribute or opera-
tion. This description is represented as
generic objects with typed attributes.
Attributes can be primitives or other
objects. This allows for complex data
models to be described regardless of
where the data comes from.

How It Works
The DataControl processes requests

from the client and maps them into
the implementation-specific data that
it retrieves from the business service.
By getting the description of the

attributes, operations, and data in a
common metadata format, the client
no longer cares about the implemen-
tation details. The DataControl
becomes the contract between the
business service and the user interface
(client), and the developer has the
freedom to change and modify the
business service as necessary without
having to break the contract.

Figure 2 shows an example of this
SOA using an EJB business service. The
DataControl sits on the client and com-
municates with the application server
as any EJB client does. When the UI
client calls an operation on the
DataControl, the DataControl in turn
calls the Java Naming and Directory
Interface (JNDI) to access the EJB,
makes the method call on that EJB, and
gets back data transfer objects. The
DataControl then passes back a collec-
tion of maps describing these objects to
the UI client. The UI client can then
make get() calls on any of the maps to
access the different attributes of the
data objects. The get() method of the
map delegates to the DataControl,
which in turn responds with the actual
data from the EJBs. The same is true
when the UI client updates the data
using the set() method of the map.

Since the DataControl is running on
the client, there’s no need to repackage
the data into XML or JavaBeans. It’s all
handled in the delegated get() and set()
methods of the map right on the client.

What’s in It for Me?
The DataControl is completely in

charge of how the data is cached, loaded,
and managed. That functionality is shel-
tered from the client because of the SOI.
This allows developers to optimize and
tweak the implementation of their busi-
ness service or extend the functionality of

the DataControl without affecting the
client. For example, we could modify the
application described by Figure 2 and add
client-side caching. In this case, we would
extend the DataControl to cache the data
on the client, saving trips to the server for
each call. The server would then notify
the DataControl when the data is invali-
dated, causing it to make subsequent
calls to the server to refresh its cache. All
of this can be done without any affect on,
or knowledge of, the clients (other than
that they will all start running faster!).

In addition to this improved flexibili-
ty in your applications, SOAs are also
designed to promote better reuse. Once
you’ve started to provide a set of servic-
es for your business, creating new
applications or business processes
becomes much easier. Simply build on
what you have while adding any addi-
tional services as you go. This allows
organizations to move away from mak-
ing big version changes to an entire
application and instead promote a
series of continuous, small changes to
the different services, processes, and
clients in their environments. This adds
a significantly higher level of maintain-
ability to any application.

Finally, let’s not forget performance,
scalability, and manageability.
Companies like Oracle, IBM, and Intel
are moving toward grid computing solu-
tions. “The Grid,” as it is known at
Oracle, is a runtime architecture that’s
designed to intelligently manage all tiers
of all your distributed applications from
one unified location. The grid ensures
that the right applications get the right
resources and computing power at the
right time. And while any J2EE applica-
tion can run on the grid, companies can
really increase the benefits they get from
the grid by having a supply of reusable
business services that are deployed and
managed using a variety of different grid
policies. As you might have guessed, this
is a perfect job for an SOA.

Take another look at service-orient-
ed architectures and decide which are
the best service-oriented interfaces for
your requirements. By implementing
an SOA, companies can gain many
benefits over traditional application
architectures, regardless of whether or
not they have committed to Web ser-
vices technologies. Developers can
start utilizing SOAs today and get
increased flexibility and better control
over their applications, while at the
same time aligning themselves with
technologies such as Web services and
grid computing to gain added advan-
tages in the future.Figure 2 SOA using EJB business service

Application Server

EJB DataControl

UI

Generic objects
to client

EJBs from server

Client

Server

SOA
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

New Crystal Reports 10.
The best in business intelligence now offers the best in business reporting.
New Crystal Reports® 10 is a faster and simpler way for developers to integrate dynamic
data into applications and implement high-quality viewing, printing, and exporting. Learn
more about Crystal Reports 10 and Crystal Enterprise™ 10, and access technical and evaluation
resources at www.businessobjects.com/v10/047 or contact us directly at 1-800-877-2340.

99.9% of the world won’t find these
screen shots terribly exciting.
But if you’re in the other 0.1%,

yeehaw.
Visual Designer simplifies

data connectivity
Deliver diverse data formatting

options within your presentation layer

Access data natively, or via
ODBC, JDBC and OLE DB

Expedite .NET and
J2EE report integration
Design and integrate reports
from within popular IDEs

Flexible Java, .NET and COM SDKs support the
tight integration of report interactivity including:
group tree navigation, exporting, printing, and
drill down

{

Use Crystal Reports 10 with
your J2EE applications

New 100% Java reporting component. Deploy
reports across Unix, Linux and Windows

Extend Crystal Reports with Crystal Enterprise.
Get world-class web report publishing,

management, and scalability

}

{

16 April 2004 www.SYS-CON.com/JDJ

t has been well proven over the
past few years that the best form
of information exchange (in a typ-
ical B2B and B2C environment) is

through XML. There are various XML-
based standards (schema) for both the
horizontal and vertical market sectors
and there are ongoing efforts to move
toward a standardized format in the
various industry sectors.

With the proliferation of an XML-
based information exchange, the
industry is bound to write lots of Java
code to consume XML Schema–based
documents. Java Architecture for XML
Binding (JAXB) provides a convenient
way to bind an XML Schema to a rep-
resentation in Java code, making it
easy for developers to incorporate XML
data and processing functions in appli-
cations based on Java technology with-
out having to know much about the
details of XML parsing.

How It Works
The use of JAXB starts from an XML

Schema. Typically in an enterprise
application, an XML Schema is
defined that constitutes the business
domain objects and their interrela-
tionships.

The JAXB (binding) compiler cre-
ates a set of classes and interfaces
from the XML Schema (see Figure 1).
These sets of classes and interfaces
are referenced and used in the appli-
cation. The application developer has
a rich set of JAXB APIs that he or she
uses to convert a Java object tree/
structure (made up of the instances of
classes generated by the binding com-
piler) to an XML document (that con-
forms to the XML Schema). The
process of converting an XML docu-
ment into a Java object tree is as
seamless and easy as the former and
the beauty of it all is that the develop-
er does not have to write a single line
of XML parsing routines in either of
the conversion processes.

The process of converting a Java
Object Tree to an XML document is
known as marshalling, whereas the
reverse process of converting an XML
document to a Java Object Tree is called
unmarshalling.

The process of creating the classes
and interfaces from the XML Schema
utilizes the JAXB binding compiler
(xjc.bat or xjc.sh) that’s included with
the installation (see Resources section).

xjc.bat –p <package name> -d <working

directory>

The –p option specifies the Java
package for the generated classes and
interfaces while the –d option specifies
the working directory.

Once the classes and interfaces are
generated, they can be used in the
enterprise application. There are two
typical usage scenarios.

1. Unmarshal an XML document to a
Java object tree

• To achieve this, an instance of a
JAXBContext object needs to be
created:

JAXBContext jContext =

JAXBContext.newInstance(“<package name>”) ;

where package name contains the
JAXB generated classes.

• An unmarshaller instance is created:

Unmarshaller unmarshaller =

jContext.createUnmarshaller() ;

• The XML document is read in and a
handle to the root Java object in the
XML document is obtained:

Library library =

(Library)unmarshaller.unmarshal(new

FileInputStream(“library.xml”) ;

library.xml is an example XML
document that conforms to the
schema file from which the JAXB-
generated Java classes and interfaces
are created, and Library is the root
object in the XML document.

Once a handle to the Library
object instance is obtained, we’re in
the Java universe! The developer can
use the power of Java to traverse
through the object tree and use the
same in the application, as required.

2. Marshal a Java object tree to an XML
document
A JAXB implementation–provided

class called ObjectFactory is used to cre-

Using JAXB in
Enterprise J2EE Applications
Incorporate XML data and processing functions Part 1

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

JAVA & XML

by Tilak Mitra

I

Tilak Mitra is a certified
IT architect at IBM.

He specializes in mid-to-
large-range enterprise and

application architectures
based on J2EE, MQ,

and other EAI technologies.

tmitra@us.ibm.com Figure 1 JAXB architecture

Binding
Compiler

Application

XML Document JAXB
API

Unmarshal

Marshal

Classes and Interface
(Derived from XML Schema)XML Schema

Conforms to
XML Schema

Instances of classes
and interfaces

Java Object
Tree

Use
d b

y

18 April 2004 www.SYS-CON.com/JDJ

ate instances of the classes and inter-
faces that are generated by the JAXB
binding compiler (during the generation
process). This class uses the Factory pat-
tern to create instances of the generated
classes and this is the only way the class
instances may be created.

Consider a small example in which a
Library contains a list of Books in which
each book has a title and a price field. The
steps to create an XML document from
the Java object tree are as follows:
• Obtain an instance of ObjectFactory:

ObjectFactory factory = new ObjectFactory()

;

• Create class instances:

Library library = factory.createLibrary() ;

Book bookOne = factory.createBook() ;

bookOne.setTitle(“Design Patterns”) ;

bookOne.setPrice(“50.00”) ;

Book bookTwo = factory.createBook() ;

bookTwo.setTitle(“Analysis Patterns”) ;

bookTwo.setPrice(“45.00”) ;

library.add(bookOne) ;

library.add(bookTwo);

• Create an instance of the Marshaller
object (from JAXBContext object
instance as in scenario 1):

Marshaller marshaller =

jContext.createMarshaller() ;

• Marshal the Java object tree to an
XML document:

marshaller.marshal(library, new

FileOutputStream(“library.xml”)) ;

JAXB Customizations
The power and flexibility of JAXB is

further augmented by its customization
feature that’s added on top of the
schema bindings. To add specific func-
tionality to an application, JAXB bind-
ing customizations are used. These cus-
tomizations are read and interpreted by
the JAXB compiler. Customization is
affected by annotating a schema with
binding declarations that either over-
ride or extend the default bindings.

Customization has four scopes:
• Global: A customization defined with

the <globalBindings> element has a
global scope applicable to all schema
elements and all other schemas that
are imported into the schema in
which this customization is defined.

• Schema: A customization defined
with a <schemaBindings> element
has a schema scope and is only
applicable to the schema in which
the customization is defined.

• Definition: A customization value in
binding declarations of a type defini-
tion and global declaration has defi-
nition scope, which covers all schema
elements that reference the type defi-
nition or the global declaration.

• Component: A customization value
in a binding declaration has compo-
nent scope if the customization
value applies only to the schema ele-
ment that was annotated with the
binding declaration.

Although a detailed discussion about
customization is beyond the scope of
this article, it’s worthwhile mentioning a
few customization artifacts that are
used more frequently in a typical JAXB
usage scenario.

Customization bindings can be made
at a global level of declaration that
applies to all the defined elements in
the XML Schema. Listing 1 provides a
typical global customization binding.

Notice how in the listing defining the
collectionType attribute tells the compil-
er that the type of collection used in the
generated classes is of type ArrayList.
The <xjc: serializable> element ensures
that all the generated classes implement
the Java Serializable marker interface.
The <jxb: package> element’s name
attribute denotes the Java package in
which the generated classes and inter-
faces are created.

All these elements’ attributes can be
tuned and configured to suit the
requirements of the application.

Customization of the default binding
can also be made at the element and its
attribute’s level. For example, an element
can be adorned with its Javadoc by using
annotations. Custom property names
can also be specified that when defined,
generate getter and setter methods for
the property. This is illustrated in Listing
2. (Listing 2 can be downloaded from
www.sys-con.com/java/sourcec.cfm.)

Notice how in the listing the <jxb:
javadoc> element is used to create the
documentation for the generated class.
The <jxb:property> element is used to
name an instance variable inside the
generated class (Library class in this
case) and generate its getter and setter
methods. The generated class hence will
have two methods: getBookList() and
setBookList(…).

A detailed explanation of these bind-
ings can be found in the Resources sec-
tion (JAXB User’s Guide).

Thinking in Terms of JAXB
In a typical enterprise application

that’s comprised of various application
tiers, data is exchanged between these

tiers to realize the business functionali-
ties. It’s a good design principle to create
a data object model that can be used for
inter-tier data exchange. This data object
model is a good candidate to be repre-
sented in an XML Schema with JAXB cus-
tomizations. With this design in place,
data can be exchanged in either XML for-
mat or as Java objects while the JAXB
libraries can be used to convert between
XML and Java in a seamless fashion.

Summary
This article introduced the basic con-

cepts of JAXB, how it works, and how it
can be used in a Java-based enterprise
application. It also provided a sneak
peek at how JAXB customizations can be
used to tailor an XML Schema to con-
form to the application requirements.

Part 2 will take a concrete example of
an XML Schema and discuss the process
of generating the classes and interfaces
from a valid XML document and also the
reverse process of creating an XML docu-
ment from a Java object tree. Stay
tuned!

Resources
• JAXB User’s Guide: http://java.sun.com/

xml/jaxb/users-guide/jaxb-using.html
• JAXB Specification: http://java.sun.

com/xml/downloads/ jaxb.html
• JAXB API Specification: http://java.

sun.com/webservices/ docs/1.3/api/
index.html

• JAXB Reference Implementation:
http://java.sun.com/webservices/
downloads/webservicespack.html

(Note: The Reference Implementation of
JAXB comes packaged inside the Java Web
Services Developer’s Pack [JWSDP]. Once
this is installed, the JAXB compile time
and runtime libraries are available in the
<install-root>\jaxb directory.)

Listing 1
<xsd:annotation>
<xsd:appinfo>

<jxb:globalBindings
collectionType="java.util.ArrayList"

fixedAttributeAsConstantProperty="true"
generateIsSetMethod="false"
enableFailFastCheck="false"
choiceContentProperty="false"

underscoreBinding="asWordSeparator"
typesafeEnumBase="xsd:NCName"

typesafeEnumMemberName="generateError"

enableJavaNamingConventions="true"
bindingStyle="elementBinding">

<xjc:serializable />

</jxb:globalBindings>
<jxb:schemaBindings>
<jxb:package name="com.ibm.domainob-

jects" />
</jxb:schemaBindings>

</xsd:appinfo>
</xsd:annotation>

JAVA & XML
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

Get a JViews Info Kit – Learn more, test drive an Eval.
Go to: jviews-info-kit.ilog.com or Call: 1-800-for-ILOG

Features, Performance and Control

© 2003 ILOG, INC. All rights reserved. ILOG and the ILOG logotype are registered trademarks, and JViews is a
trademark of ILOG. All other brand, product, and company names are trademarks of their respective owners.

Discover the ILOG JViews Graphics Components
You’re developing a sophisticated user interface for a desktop, applet or
servlet application – it needs to provide displays that go far beyond what
Swing and HTML offer. How can you be sure it will have the features,
performance, customization and scalability to enable your end-users to
make better more informed decisions, faster?

With ILOG JViews, you get comprehensive graphical libraries & tools,
resources, and maintenance services so you can focus on the
implementation, confidently completing your application in less time and
at less cost.

Quickly and easily build:
 Gantt and resource displays
 Graph layouts, diagrams, workflows
 Geographic map displays
 Realtime data charts
 Custom monitoring and control screens
 Network and equipment management screens

Get the
 complete picture
Get the
 complete picture

20 April 2004 www.SYS-CON.com/JDJ

his gives Borland’s president and CEO, Dale Fuller, a
unique vantage point from which to comment not just on
Java or .NET, but on all manner of current technologies.
Fuller also recognizes, along with JDJ, that these days
“Everyone from the CIO through to the developer is in the
business of software.”

Accordingly, this month’s JDJ “Question & Answer” session
gave Fuller an opportunity, from his corporate world headquar-
ters in Scotts Valley, CA, to deal with a range of issues from ASPs
and Web services to SOA, Linux, application life-cycle manage-
ment, “invisible middleware,” and Borland’s future role as IT’s
nearest equivalent to the United Nations – serving all those in the
world business of software, no matter what particular brand they
may owe allegiance to.

JDJ: We have the basic building blocks and standards in place
for Web services, and people are using them. Where do you
think we will go from here?

Dale Fuller: We’ll need tools that will allow us to put the Web ser-
vices standards and building blocks to use in a higher-level way.
Web services lend themselves to a more business process–orient-
ed approach toward applications and we are going to require
development tools that work in this more process-oriented way.
This means tools that can visualize the solution at a higher level
– think UML models, but UML models that serve as more than

just a blueprint, and instead become the basis for the applica-
tion itself. The software industry must go beyond SDKs and
toolkits and toward a higher-level way of building and integra-
ting applications.

JDJ: Whatever happened to confuse the meaning of Web services?
Do you think that it’s because Microsoft focused at the beginning
on Web services from the consumer, individual point of view
rather than from the back-end IT point of view?

DF: Looking at the origins of the Web services story, you’ll
see that the “marketing” side didn’t embrace the terminology
that IT and developers were accustomed to in distributed
computing.

The terms that we all understood at the time were
things like remote invocation, request brokers, distributed
objects, call backs, functions, and APIs. When Web services
was introduced, there was a significant emphasis on the
“services” aspect of this new technology opportunity.
This made Web services appear to be something more
magical and dot.com oriented, rather than a simple and
practical technology for building networked and distributed
applications.

This probably had to do with the timing of the emergence of
the technology; remember at the time the SOAP specification
emerged, the hot prospect of the day was application service

Anyone in the i-technology world engaged in

developing, deploying, integrating, or managing

software applications knows Borland Software

Corporation – BORL as it’s known on the

NASDAQ – to be the company that above all

aims to let clients deploy online applications

that are compatible with different platforms.

Interview by
Jeremy Geelan

T

The

‘United Nations’
of

the i-Technology World?
Borland strives to blaze the trail

for all those in the business of software

DALE FULLER
BORLAND

EXCLUSIVE Q & A WITH...

OF

www.SYS-CON.com/JDJ

providers (ASPs). I think many in the
industry saw a natural fit and wanted
Web services to ride the coattails of
that wave.

JDJ: Does Borland see a role for Linux within
Web services?

DF: Wherever there is a Web server there is a
role to host Web services, and there are cer-
tainly a lot of Apache Web servers running
on Linux.

JDJ: Salesforce.com’s CEO Marc Benioff
prefers not to use the term “Web services”
at all but refers to the distributed application
architectures that we’ve all been pursuing for
years as “client/service.” Do you agree?
Should we be talking about “client/service”
architectures now?

DF: To the extent that “Web services”
describes just one of the possible bene-
fits of the technology, the title can be
seen as a misnomer. It is certainly a good
idea to talk about the other benefits of
Web services such as “client/service,”
“peer to peer,” and “business to busi-
ness.” However, over the last five years
the term Web services has become pretty
entrenched in IT vocabulary for a simple
and fundamental idea, the practical
applications of which are well beyond a
single architecture.

JDJ: How do we straighten things out so
that from here on technology buyers can
understand it all?

DF: If the software industry were to talk
about Web services as the simple messag-
ing protocol it was initially designed to
be, more organizations would begin to
see the potential benefits for using Web
services in their businesses. This could
very well be a case where actually talking
about technology could simplify the mys-
tery of the higher-level marketing that
has dominated the technology since its
inception.

JDJ: What about the buzzword of 2004,
SOAs – do you agree with those who
say that enterprise adoption of service-
oriented architecture will take many
years? If so, then in the meantime what
should programmers be doing?

DF: SOA is happening as we speak and IT
organizations are quickly realizing that
the business advantages of SOA are sim-

ply too large to be ignored. The need to
quickly respond to changing market and
organization conditions and to maxi-
mize business agility is the key drive
behind service architectures. Quality,
reliability, and maintainability are main
concerns for CIOs today as they look at
their software systems. However, shifting
to SOA requires greater architectural dis-
cipline across the entire organization
and throughout the application life
cycle.

To be successful at it, IT groups
cannot work in isolation; strong team col-
laboration is required to define, imple-
ment, and manage SOA. SOA also incurs

greater performance overhead, a risk for
systems that have strictly enforced
response times. This requires closer per-
formance monitoring and a secure, scala-
ble, distributed computing environment.

JDJ: We heard reliable rumors at JDJ when
“Tiger” was unleashed earlier this year that it
went through unanimously, but that three of
the heavyweight companies among the 14
members on the JSR committee concerned
were complaining that there’s not enough
CORBA support. Does Borland have a position
on CORBA support in Java?

DF: The CORBA ORB capabilities offered
within J2SE provide basic support for
such technologies as the Internet Inter-
ORB Protocol (IIOP), the communication
foundation with CORBA. While J2EE uses
Remote Method Invocations as its com-
munication foundation, the EJB specifi-
cations within J2EE define that it is IIOP
that must be used in order to access
EJBs.

This hasn’t changed even with the
latest J2SE 1.5 release. As organizations
implement CORBA servers throughout
their enterprise, they must rely on enter-
prise-grade CORBA ORBs that provide
extensive CORBA services beyond
those offered within J2SE/J2EE. Some
of these services include security,
transactions, notification, and messag-
ing as well as support for other enter-
prise grade qualities of service such
as failover, load balancing, and
clustering.

JDJ: Still on Java, what’s your position on
the JCP – is it the right way of doing things?

DF: Borland is committed to the Java
Community Process and to supporting
Java standards. We believe that the JCP
was the right model for a specific time
in the evolution of Java technology.
Sun maintained “executive” control
as a lever to keep the technology
evolution moving quickly. However,
as Java technology matures, it could
be time for Sun and the JCP to look
at an increasingly participative, demo-
cratic model that is more reflective
of open standards.

JDJ: Would/could anyone else safely be
the custodian of Java? The open source
community, for example?

DF: We may have reached a stage in the
evolution of Java technology where it is
much less vital to have a “custodian” as we
have had in the past.

Everyone from the CIO through to the developer
is in the business of software”“

JDJ Industry Profile

21April 2004

22 April 2004 www.SYS-CON.com/JDJ

JDJ: While on the subject of open source,
what overall effect on Java do you foresee
from the compelling economics of Linux?

DF: Linux is driving the adoption of
low cost, open source servers in the
marketplace. Java is viewed as the de facto
application platform for the building and
deploying of applications on top of that
operating system. You could see Linux
driving increased demand for J2EE/JSP/
servlet-based applications.

JDJ: Do you think J2EE is too complex?
If so, what’s the best way forward?

DF: It isn’t a question of J2EE being too
complex. J2EE is a layer between the com-
plexity of network-based utilities, such as
DB, directory, security, and transaction
processing.

What’s necessary is the ability to pro-
vide the developer with a better sense of

“context” as to where he or she is in the
process of building new applications that
plug into an existing infrastructure or in the
process of deconstructing and rebuilding
existing applications.

JDJ: Why do you think Sun’s Jonathan Schwartz
said to JDJ in February: “Middleware is
history”? Is middleware in fact just beginning?
Or is Schwartz right in saying that end-to-end
“systems” will supplant it?

DF: Borland has always had a strong rela-
tionship with Sun, but on this point, we’ll
have to lean toward the IBM billboards that
dot Highway 101 in northern California.
Their latest slogan is: “Middleware is every-
where. Can you see it?”

Sun provides an integrated “Java
Enterprise System” that offers all of the
basic components of shared services,
from directory and identity management
to Web services, e-mail, and clustering.
While Borland does offer an application
life-cycle management solution for Java,
we prefer to see ourselves as the
Switzerland of software development –

providing our customers with the freedom
to choose from a variety of vendors’ tech-
nologies depending on what works best in
their organization’s IT environment.

JDJ: As a major business leader, what have you
found to be the most compelling aspect of
the technology space? And what’s the least
attractive aspect?

DF: Most compelling: the fact that who we
define as a software person today is drasti-
cally changing to recognize that everyone
from the CIO through to the developer is in
the business of software. The fact that the
pace of change and innovation is forcing
globalization and making the world smaller
by bridging geographic and cultural
divides. The fact that companies like
Borland who helped drive the PC evolution
are still making software pervasive in all
that we do today – such as the use of our
technologies in projects as broad as St.
Judes Children’s Hospital and the NASA
Mars Rover Mission.

Least compelling: when a vendor’s self
interest gets in the way of freedom and
innovation.

JDJ: After such great success with the
notion that Borland is “the developer’s
Switzerland,” will there ever be a need for

you to choose – once and for all – between
J2EE and .NET, for example?

DF: The trend is definitely toward greater

heterogeneity. The analyst groups predict that
moving forward it will be a two-horse race
between J2EE and .NET. Borland would have
to agree, because at the end of the day, it is
about having the right technology for the
problem at hand. Borland exists to ensure that
our customers have that freedom of choice.

JDJ: If ever you abandoned the “Swiss”
metaphor, what other country could
Borland usefully emulate and invoke to
characterize its unique role?

DF: I would have to say that we wouldn’t be
a country at all – we’d have to be seen
more like the United Nations. We don’t
make the laws governing software develop-
ment, but we do set out to help resolve
conflicts between programming languages
and break down the barriers between peo-
ple and technology across the software
development paradigm. We see ourselves
as the end user’s champion – one of the
last bastions of independence in the indus-
try, playing a key role in helping to formulate
the policies and standards that affect the
industry.

JDJ Industry Profile

Quality, reliability, and maintainability are main concerns for
CIOs today as they look at their software systems.

However, shifting to SOA requires greater architectural discipline across
the entire organization and throughout the application life cycle”

“

DF: Borland has solutions available today that provide management, control, and visibility to implement
SOA across the entire organization. Our application life-cycle management strategy is designed to reduce risk and
uncertainty, helping to ensure that developers are not working in isolation, but are quickly and reliably building
solutions in line with business needs. Our goal is to make standards easier to use while avoiding vendor lock-in.
And that’s what’s made us #1 in Java development.

JBuilder has always found ways to make Java and J2EE easier to use. We continue to do that with JBuilder X.
JBuilder X offers a visual struts designer that takes advanced Web development in Java to the next level of pro-
ductivity. As new Java standards emerge, we will continue to make them easier to use, and we’ve taken a leader-
ship role in extending that productivity throughout the entire application life cycle with solutions such as
Borland Enterprise Studio for Java. This combines JBuilder development technology with our Together solution for
modeling, Optimizeit for performance management, CaliberRM for requirements management, and StarTeam for
change management, as well as Borland Enterprise Server and JDataStore for deployment.

And products such as Borland Enterprise Server; Borland Deployment Op-Center; and Janeva for .NET, J2EE,
and CORBA interoperability were designed to enable architectural heterogeneity.

Where does Borland stand in the i-technology world?

24 April 2004 www.SYS-CON.com/JDJ

ooner or later all architects and
developers of large-scale J2EE
products face the same problem:
their software’s response time

gets slower and slower, and the scalabil-
ity of their solution is ending. This arti-
cle investigates caching solutions that
promise to help; sheds some light on
their limitations; and describes an easy,
lightweight, and effective caching
mechanism that solves most of the
issues.

Note: This article does not assess all
possible ways of caching nor does it
take solutions such as commercial
external caching products into
account.

The Problem
Whenever we build distributed soft-

ware for a large scale – whether it’s J2EE
or not – we face the same challenge:
keep response or transaction times low
while increasing user load. The main
problem is that essentially all software
systems scale exponentially at some
point (see Figure 1). Architecting and
implementing a solution that keeps
scalability linear and leaves enough
room for increasing load as the business
grows is a difficult task that requires
experience.

A good architect keeps traffic, trans-
action times and volume, persistence
layer design, and caching in mind when
he or she drafts the first layout of a new
architecture. Understanding concurrent
access by n users on m data items is one
of the major things an architect looks
for.

Possible Solutions
Minimizing traffic in all tiers is the

primary objective when creating a scal-
able solution. Figure 2 shows a typical
three-tier system.

While the persistence tier in modern
databases already provides significant
caching capabilities, it’s rarely enough
for large-scale systems. What do other

mechanisms do to increase perform-
ance and scalability, and to what
tier/layer do they apply?

Stored Procedures?
I mention this because aside from

caching, one suggestion I always
hear is using stored procedures. I’d like
to encourage everyone to consider dif-
ferent options. Using stored procedures
splits the persistence layer over two
physical tiers and usually improves
only single user performance.

If you look at your application serv-
er’s console, you might see, for exam-
ple, that of the 500ms a servlet or JSP
request takes, only 100ms are spent
on the DB transaction side. Squeezing
another 30ms out by using stored pro-
cedures rarely makes your system
scale – you still need DB connections,
cursors, and other resources.

Persistence Layer Caching
The easiest way to cache in J2EE

systems is with entity beans (if we say
entity beans let’s only talk about CMP
for the moment); I can hear the read-

ers moan, but the fact remains: they
are the only “good” way of caching in
J2EE solutions. Why? Because the max-
imum cache size is controllable by set-
ting the maximum number of beans
and because the resource is in control
of the container, as they can be passi-
vated if memory is short. Usually, they
are the only resource that is cluster-
able as well.

Why would most developers and
architects say entity beans are bad for
your performance? Because they are.
In a single request use case, they have
significant overhead compared to
direct JDBC. But even in scalability
assessments, entity beans often come
out last, because their usage as a cache
is determined by the possible cache hit
rate, just like any other cache. The
cache hit rate is determined by the
number of reads versus the number of
data items versus the number of
writes.

Ultimately, if you use entity beans
you really need to know what you’re
doing. While that might be true for
any out-of-the-box mechanisms a

Scalability of J2EE Applications
Effective caching

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

CACHING MECHANISMS

by Stefan Piesche

S

Stefan Piesche is a
principal architect for the

Cobalt Group (HQ in Seattle)
responsible for large-scale,

distributed systems based on
J2EE. In the past years he’s

worked on several large-scale
systems in Europe in the

financial and airline industries.

spiesche@austin.rr.com Figure 1 Linear versus exponential scalability

Re
sp

on
se

 T
im

e

1x 2x

Requests

26 April 2004 www.SYS-CON.com/JDJ

CACHING MECHANISMS
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

container provides, it’s especially true
for entity beans. It’s easy to get it
wrong and a lot of containers have
less than mediocre support for entity
beans.

Entity beans make sense if:
• Your reads and writes are few, then

scalability is not your concern any-
way and CMP EJBs are just as con-
venient.

• Your reads are many, your writes and
number of data items are few – this
means maximum cache hit rate –
you have just a few items to cache
(most containers only perform well
with a few thousand entity bean
instances per CPU), and it rarely
becomes stale because you hardly
write.

In all other cases, entity beans just
make things worse due to their man-
agement overhead. Figure 3 shows that
cache efficiencies (like entity beans)
depend on the number of reads versus
the number of writes versus the number
of rows (which is an oversimplified per-
ception and not real math). Caching
with entity beans works well within the
green area.

One important fact needs to be
considered as well: some application
servers (WLS 6, WebSphere) do not
support EntityBean clustering/
caching in clustered infrastructures.
In other words, they often support
only the caching of read-only entity
beans if you run a cluster, which rules
straight CMP out completely to
increase scalability.

Let’s have a quick look at BMP
(mainly read-only or read-mostly

BMP). These type of entity beans can
be used to solve the problem of too
many entity bean instances by allow-
ing you to change the caching granu-
larity: while CMP caches on a per-
data-row basis, RO BMPs can essen-
tially cache on any desired granularity
level and are basically similar to the
caching mechanism I’ll discuss later.
However, they still have a few disad-
vantages, such as the entity bean
management overhead or (depending
on your container implementation)
the fact that they usually are – like all
entity beans – single threaded: only
one request at a time can access the
cache.

In all other cases (mixed reads/
writes, lots of data, few reads many
writes, etc.), how do we make our soft-
ware scalable?

Web Tier Caching Using HTTP Session
If persistence layer caching through

entity beans is ruled out, we have two
tiers left where we could cache.

The most obvious choice developers
often make is HTTP session caching.
Since it caches at the uppermost tier, it
should be most effective at minimizing
traffic, right? However, using the HTTP
session as a cache makes architects of
large-scale systems shudder.

First, it caches on a per-session basis:
it helps if one user performs the same
or similar action 5,000 times but not if
5,000 users perform one action.

Second, the cache invalidation and
GC is based on the session time-out –
usually something like 60 minutes.
Even if a user works for 10 minutes in
your system, the data is cached for 60

minutes, which makes the cache size
six times as big as it needs to be,
unless you invalidate your session
manually.

Finally, it removes one important task
from the container: resource manage-
ment. Since this cache cannot be
cleared by the container, it often causes
problems since the container cannot
GC these objects even if memory
resources become short. The container’s
GC cycles become more frequent and
the GC has to walk over a large set of
mainly stale objects in your session,
making the cycles longer than they
need to be.

Singletons and Application Context
The last place to cache is in the busi-

ness layer (the following mechanism
could be used in the Web tier as well).
Since the HTTP session is not very
effective at caching in high-traffic sys-
tems, the next best choice is using sin-
gletons to cache objects or data from
the database.

Singletons (just like the application
context) have the advantage that they
again cache for all requests, but still are
not a container-managed resource.
Frequently singleton caches are imple-
mented as a plain Hashtable and are
unlimited in size, which causes almost
the same problems as HTTP session
caching.

I’d like to recall a simple but effec-
tive caching strategy that is singleton-
based and uses a container such as a
mechanism of resource management
to keep resource usage to a minimum.

LRU Caching
The strategy used is called LRU

(least recently used), also known as
MRU (most recently used). Essentially,
it only caches objects that are used
frequently by limiting the cache size
to a fixed number of items (hence the
name), just like a container pool size
for EJBs, thus keeping resource uti-
lization controlled.

How does this work? Essentially
it’s a stack: if an object is requested
from the stack and it’s not there
(cache miss), it’s inserted at the very
top. If your cache size is 1,000 items
and the cache is full, the last item
will fall off the stack and effectively
be removed from the cache (see
Figure 4).

In case an object is on the cache, it
will be removed and reinserted at the
top (see Figure 5).

This way, the most often used items
will remain at the top, and the least usedFigure 2 Three-tier system with business layer and persistence layer in middle tier

28 April 2004 www.SYS-CON.com/JDJ

items will eventually drop off the
stack. You can even keep track of your
hits and misses easily and either
query this information to reconfigure
your cache or grow and shrink the
maximum size dynamically. This way,
you minimize usage of resources and
maximize cache effectiveness. The
stack implementation depends on
your needs: choose an unsynchro-
nized model if necessary to allow con-
current reads and minimize overhead.

Cache Invalidation
This cache works best in read-only

or read-mostly scenarios. Unless you
implement write-back or other write
cache synchronization schemes or
don’t care that the cache is out of sync
with the data source, you’ll have to
invalidate the cache, which decreases
the cache hit rate and efficiency. For
example, you can implement write-
through caches fairly easily using
dynamic proxy classes (JDK 1.3 intro-
duced support for dynamic proxies)
but that is a topic for another article.

Singleton-based LRU caching still
has the typical problem of all single-
ton-based caches: a singleton is not a
singleton in distributed systems
(J2EE for that matter) but unique per
classloader or server context (if
you’re lucky), and it’s not kept in sync
in clustered environments. There are,
of course, mechanisms to implement
the synchronization of distributed
resources; some of them are difficult
to implement or have scalability or
availability issues; some work just
fine. Distributed caching is not easy
and if your requirements force you to
go down this path, you might be well
served choosing a commercial
caching product.

The fact that you have several
unsynchronized cache copies in
clustered environments can be a
big problem. The easy solution is
using timed caches (just like read-
only entity beans), which means
that if a cached object is a certain
age, it’s considered stale and will
be dropped from the cache. This is
sufficient in most cases, but let’s
look at the following scenario.

Let’s assume our invalidation
time is 30 minutes (an object older
than 30 minutes is considered
stale). Cache A caches an object at
11:15, Cache B at 11:35. If the data
item the cache is referring to is
refreshed in the database at 11:40,
Cache A will have the correct value
at 11:45 when it expires but Cache

B won’t have it until 12:05 (see
Figure 6). The problem now is that
for 20 minutes you get different
results – depending on which serv-
er you hit and on the use case this
can be a big problem.

The solution for these cases is a
timed cache that is refreshed at fixed
points in time every n minutes, like
at 12:00, 12:30, 1:00, etc. The advan-
tage is that now all your caches are
somewhat in sync (as in sync as the
clocks on your servers are). The dis-
advantage is that the load on your
servers increases quite a bit every
time the caches are cleared, because
they’re cleared completely.

Which way you go depends on
your business requirements;
adjusting your refresh cycles largely
depends on your data update fre-
quency versus the cache hit rate
you would like to achieve.

Of course, there are a variety of
other ways to keep distributed
copies of caches in sync, but these
are not easy to implement and have
a variety of side effects to consider.

Open Source and Commercial
Caching Implementations

If your caching needs are more
complex, or if you just don’t want to
“roll your own,” you might want to give
JSR 107 a look. This is the JCache JSR
that specifies a distributed, resource-
managed, Java-based cache. Even
though little progress has been made
to provide a production-ready imple-
mentation, there are several open
source projects and products that are
close to a JCache implementation and
might provide what you need.

Commercial caching products
should be considered if your caching
requirements are complex (clustered
environments, etc.). As mentioned
earlier, distributed caching is not as
easy at it seems and relying on an
enterprise-class product often saves
time and trouble.

Building a scalable solution
often depends on making the right
decisions in persistence mecha-
nism and in caching. How, when,
and where to cache is the trick; I
hope this article helped you make
the right decision.

References
• JSR 104:

www.jcp.org/en/jsr/detail? id=107
• JCS and JCache at Apache: http://

jakarta.apache.org/turbine/jcs/
JCSandJCACHE.html

Figure 4 Cache miss and insertion

A

B

C

D

E

Z

A

B

C

D

E

insert 'Z'insert Z

removedo

Step 1: Lookup & Cache miss Step 2: Insertion of new Element

Lookup for
Z , Cache'Z', Cache

miss

Figure 3 Entity beans cache efficiency diagram

1/reads

writes

rows

Figure 5 Cache hit and object moving to top

A

B

C

D

E

D

A

B

C

E

move 'D'move D

Step 1: Lookup & Cache hit Step 2: Move to the top

Lookup for
D , Cache'D', Cache

hit

Figure 6 Caches getting out of sync

Cache
A

Cache
B

Cache
A: X=1

Cache
B: X=1

Cache A - X
considered

stale

Cache B: X=1
considered

valid

Updates X = 2
@ 11:40

Request Request

Reads item X=1s item

Request
at 11:50
Result:ltult

Request
at 11:55
Result:ltult

Reads item X=1s item Reads item X=2s item

CACHING MECHANISMS
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

30 April 2004 www.SYS-CON.com/JDJ

hen Java was first released, it
was immediately attractive
due to its ease-of-use and the
promise of WORA (write once,

run anywhere). As it evolved, the value of
the JRE abstraction has manifested itself
in many ways not immediately apparent
from the days of animated applets. For
example, the widespread adoption of Java
on the server helped to drive the develop-
ment of several performance profiling
and application monitoring tools and
techniques. These tools and techniques
bring great value to the Java platform but
some also have significant limitations and
drawbacks. This article surveys current
tools and techniques and looks at new
initiatives to evolve the JRE into a truly
manageable runtime.

Managed Runtime Environments
One of the original key goals of Java

was to provide a layer of abstraction
that allowed a programmer to write
code that was portable to many differ-
ent hardware/OS platforms. However,
the Java Virtual Machine (JVM) doesn’t
just offer programmers a machine-
independent way to run their code, it
dynamically manages executing code.
The JRE was the first mainstream
Managed Runtime Environment
(MRTE) with characteristic properties
such as:
• Bytecode: A machine-independent

executable representation of applica-
tion code

• Automatic memory management:
Object allocation, garbage collec-
tion, dynamic heap resizing, and
compaction

• Program security and correctness:
Bytecode verification, sandbox for
applets, no pointers, type checking,
array bounds checks, and null point-
er checks

• Dynamic optimization: The VM can
adapt to the characteristics of the
running application and selectively
optimize the code it generates

• Exception handlers: Deal with unusual
situations and errors

These things are not unique to Java.
Some are also characteristics of Smalltalk
(developed in the early 1970s) and there
are also close similarities to Microsoft’s
.NET CLR. Interestingly, at least one
MRTE implementation supports both
Java and Microsoft’s Common Language
Infrastructure (CLI), with only a relatively
small amount of customization required
to handle the different bytecode formats
of CLI and Java.

MRTEs have emerged rather quietly.
When Java was first released by Sun in
1995, most of us weren’t really framing
the benefits of Java in terms of managed
code, rather we were struck by the prom-
ise of WORA and the benefit of a powerful
JDK API, which made it pretty straightfor-
ward to start developing your own appli-
cations, even if you were new to the
world of object orientation. Many of the
intrinsic benefits of an MRTE were initial-
ly secondary to a new breed of program-
mer but proved key to Java’s expansion to
the server, where it became easier to
write secure, robust, multithreaded,
memory-intensive applications. It was
soon also widely recognized that the
abstraction required to handle an inter-
mediate binary format need not come at
the cost of performance, as MRTEs can
use a dynamic code optimizer to react to
the runtime characteristics of an applica-
tion. Look at what Microsoft is doing with
.NET, or the work Intel is doing to evolve
its new range of 64-bit Itanium proces-
sors, and it’s clear that the (inevitable)
migration to MRTEs is widely recognized
by both software and hardware vendors.
In fact, the proliferation of MRTEs is seen

by many as the biggest paradigm shift in
software since the move from assembler
to high-level programming languages.

For an MRTE to be as efficient, stable,
and scalable as possible, it shouldn’t be
just a black box. We should be able to
peer inside to make sure there are no
obvious performance bottlenecks, mon-
itor memory usage, etc. To be viable in
the enterprise, a managed runtime
should also be manageable.

Rather than just blindly executing
bytecode, a JRE has the ability to add
value by adapting its environment to
the running application. A few exam-
ples of how this is possible are:
• Progressive levels of code optimiza-

tion: Optimization requires processor
time, so the JRE should focus its most
aggressive optimization on the most
frequently called methods.

• Dynamic expansion or contraction
of the heap size, according to the
needs of the application

• Adapting the garbage-collection
algorithm to the requirements and
behavior of the application: A typical
trade-off here is acceptable maximum
pause time versus overall throughput.

Not surprisingly, there are limitations
to the JRE’s ability to adapt to the
behavior of a running application. Also,
hardware resources are always limited,
of course, and programmers often
introduce performance bottlenecks,
which are hard to remove. To get the
best performance and scalability from
your Java environment, you’ll need to:
1. Optimize your application code
2. Tune the JVM for the application and

underlying OS and hardware

These two things are obviously not
entirely independent, so it may be an
iterative process to fully optimize your
runtime system. Since the early days of
“almost-black-box” JVMs, various tools
and techniques have evolved to help
optimize your application during devel-
opment and monitor your application in
production. These tools generally use
bytecode instrumentation or the Java
Virtual Machine Profiler Interface
(JVMPI). Several commercial tools are
aimed at monitoring J2EE applications,

Evolving the JRE
...from a managed runtime to a manageable runtime

TOOLS AND TECHNIQUES

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

W

by Stuart Lawrence
and Bob Griswold

Figure 1 The JRockit Management Console

31April 2004www.SYS-CON.com/JDJ

e.g., Introscope (Wily Technologies),
PerformaSure (Quest Software), and
Cyanea/One (Cyanea).

Keep in mind that all of these tools
introduce a performance overhead into
your system – the more information you
want, the higher the overhead – and they
don’t tell you much about the behavior of
the JVM. To tune the JVM you’ll probably
benefit from running your application
under load, looking closely at the per-
formance and behavior of the applica-
tion, and doing some trial-and-error
adjustment of the available JVM parame-
ters (which vary across different JVM
implementations).

The BEA JRockit Management
Console is a tool designed primarily to
monitor the runtime characteristics of
the JVM (as opposed to the behavior of
the application). The console can con-
nect to one or more remote Java process-
es and be used to monitor many runtime
statistics and parameters of the running
JVM. Two benefits here for a production
system are: (1) the monitoring overhead
is insignificant (measured to be less than
1% for several different workloads), and
(2) the console has a configurable event
notification framework that can be used
to notify an operator of certain warning
events, giving them the opportunity to
react to a situation before something
more dramatic happens (e.g., a trigger
can be set to identify a low available free
memory condition, perhaps allowing an
operator an opportunity to take correc-
tive action and avoid the infamous
OutOfMemory Exception).

The JRockit console shows important
characteristics of the JVM, such as the
heap and CPU usage. It also includes a
method profiler and an exception
counter. Figure 1 shows the memory
panel of the management console.
Most of this information is also avail-
able in the administration console of
WebLogic Server (which uses a stan-
dard JMX interface to expose JRockit
runtime statistics).

Future Directions
Many of the current profiling tools

and techniques can be invaluable in
tuning your application or JVM, debug-
ging problems, and capacity planning.
However, many of these approaches also
have some significant drawbacks:
• Applying any of the profiling tech-

niques causes a perturbation to the
running system. You can’t measure the
system without having some impact
on it (the inescapable Heisenberg
Uncertainty Principle).

• Licensing costs.

• They work only with specific JVMs (e.g.,
JFluid or the JRockit class preprocessor).

• The tools lack an active feedback
loop, i.e., these approaches are moni-
toring rather than true management
solutions. For example, if an operator
sees the JVM is running out of heap
space in the JRockit Management
Console, it’s not currently possible to
dynamically resize the heap.

Most of these tools also miss an essen-
tial part of the equation, as they focus on
application performance and give you
little indication of whether performance
problems are caused by the JVM (or
maybe the underlying OS). BEA has
recently made public their JRockit
Runtime Analyzer (JRA). This tool col-
lects a wide variety of JVM runtime data
for a specified sampling period. A graph-
ical tool is then used to display this data,
providing deep insight into the behavior
of both the application and the JVM.
One of the major benefits of this tool is
that the profiling capability is built
directly into the JVM, which allows for a
much lower overhead (measured to be
<1%) compared to the other common
techniques of bytecode instrumentation,
or JVMPI.

Another great benefit of JRA is that it
collects a lot of data that’s not possible
with a standard JVMPI-based tool, e.g.,
JRA shows you which methods have been
optimized and provides detailed informa-
tion about all the GC cycles that have
occurred during the profiling phase. The
JRA is a very versatile tool that can add
value in a variety of different situations:
• Developers can use the JRA to identi-

fy bottlenecks in their application, or
provide data to help tune their heap
and GC parameters.

• The BEA Customer Support team can
analyze JRA profiles sent by cus-
tomers who suspect a JVM problem.

• JRA data is used internally within
BEA, in advanced development of the
JRockit JVM.

More details on this tool can be found
at http://edocs. bea.com/wljrockit/
docs81/jra/jra.html.

In addition to vendor-specific solu-
tions, various JSRs have emerged to
evolve the JVM into a manageable envi-
ronment and address some of the limi-
tations of earlier implementations of the
experimental JVMPI. J2SE 1.5 will
include a new Java Virtual Machine Tool
Interface (JVMTI), and an API to moni-
tor the state and control the execution
of programs running inside the JVM.
JVMTI is designed to provide an inter-

face for a wide variety of tools that need
access to the VM state, e.g., profiling,
debugging, monitoring, thread analysis,
and code coverage tools. This work is
being implemented through JSR 163
(and is closely related to JSR 174). JVMTI
supercedes the Java Virtual Machine
Debugger Interface (JVMDI) and pre-
requisites the new Java Platform
Profiling Architecture (JPPA), which will
supercede and improve upon the exper-
imental JVMPI.

JVMTI agents run in the same process
as the JVM being examined, communi-
cating through a native interface that’s
designed to allow maximum control
while introducing minimal overhead on
the running system. Agents should be as
lightweight as possible, and are con-
trolled by a separate process that imple-
ments the bulk of a tool’s function with-
out interfering with the target applica-
tion’s normal execution. JVMTI is a two-
way interface whereby agents can both
query and control applications through
functions, and be notified of interesting
events. JVMTI functions may be catego-
rized into different groups. Some exam-
ples of available functions are given in
Table 1.

Agents can respond to many different
events that occur while running a Java
application. Some example events that
may be generated:
• Breakpoint: When the running applica-

tion hits a predefined breakpoint
• Field Modification: When the applica-

tion accesses a designated field
• Method Entry/Exit: When the applica-

tion enters/exits a particular Java pro-
gramming language or native method

• Class Load/Unload: Generated
when a particular class is loaded/
unloaded

• Garbage Collection Start/Finish:
Generated when a full-cycle GC
begins/ends

Table 1 Example JVMTI functions

Group Example Functions
Thread SuspendThread

ResumeThread...
Heap ForceGarbageCollection

IterateOverObjectsReachableFromObject
IterateOverInstanceOfClass...

Stack Frame GetStackTrace
PopFrame...

Object GetObjectSize
GetObjectHashCode
GetObjectMonitorUsage

Breakpoint SetBreakpoint
ClearBreakpoint

Watched Field SetFieldAccessWatch
ClearFieldAccessWatch
SetFieldModificationWatch
ClearFieldModificationWatch

Bob Griswold is the VP and
general manager of the
Java Runtime Products Group
at BEA Systems, responsible
for the overall management
of the WebLogic JRockit JVM
business. He has also held
management positions at Sun
Microsystems, as well as the
Boston Consulting Group. He
holds an MBA and a master’s
in East Asian studies from the
University of Chicago.

griswold@bea.com

Stuart Lawrence is the
program manager for
BEA’s Java Runtime Products
Group. He was previously an
engineering manager in the
WebLogic Server team and
prior to BEA he worked on
JDK implementations at IBM
and Sun Microsystems. He
holds a PhD in physics from
the University of Oxford.

stuartl@bea.com

32 April 2004 www.SYS-CON.com/JDJ

TOOLS AND TECHNIQUES
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

JVMTI includes an extension mecha-
nism whereby a JVMTI implementation
can provide functions and events beyond
those defined in the specification. This
mechanism can be used to provide JVM
implementation–specific information,
which may be invaluable for monitoring
or debugging situations.

Also included in JSR 163 are APIs for
JVM monitoring and management
(java.lang.management) and in-process
instrumentation (java.lang.instrument).
The former API, described in more detail
in JSR 174, provides a monitoring and
management interface to the JVM and
the operating system. It is designed to be
suited to production environments and
can be used to gather data on the
threading, class loading, and memory
subsystems, for example. The
java.lang.instrument API, known as Java
Programming Language Instrumentation
Services (JPLIS), allows agents written in
Java to instrument applications running
on the JVM. The agent provides an
implementation of the ClassFileTrans-
former interface, which is used to modi-
fy the bytecode of a class before it’s actu-
ally defined in the JVM (i.e., providing a
standard way to do class preprocessing).
Details of the proposed “management”
and “instrument” APIs may be found by
downloading the latest version of the
JPPA.

Summary
We’ve described some of the benefits

of Java in the context of the JRE as a
Managed Runtime Environment. We sur-
veyed several tools and techniques avail-
able to profile Java code and monitor the
runtime characteristics of a JRE. In the
future, the manageability of JRE imple-
mentations will be enhanced through
the standard JVMTI interface as well as
through vendor-specific tools. Driven by
the needs of server-side, business-criti-
cal applications, the Java managed run-
time will evolve into a truly manageable
runtime.

References
• Intel Technology Journal, Vol. 7, issue 1:

www.intel.co.jp/technology/itj/ 2003/ vol-
ume07issue01/art01_orp/p03_mre.htm

• JSR 163: Java Platform Profiling Archi-
tecture: www.jcp.org/en/jsr/detail?
id=163

• “Using the Monitoring and Management
APIs”: http://edocs.bea.com/
wljrockit/docs81/jmapi/index.html

• JSR 174: Monitoring and Management
Specification for the Java Virtual
Machine: www.jcp.org/en/jsr/detail?
id=174

Here’s a quick survey of some of the tools and techniques available.

Bytecode Instrumentation (and Class Preprocessing)
Java bytecodes can be instrumented statically (i.e., by the generation of an instrumented

.class file) or dynamically at runtime during the class-loading process. Many profiling tools use
the latter approach, utilizing a custom class loader that modifies the byte stream read from the
.class file during the class-loading process. Usually only certain classes will be instrumented,
to minimize the performance overhead of the profiler.

The Byte Code Engineering Library (BCEL) provides freely available tools that can be used
to instrument existing classes, or create them from scratch (http://jakarta.apache.org/bcel/).
The BCEL API may be used to instrument classes both statically or on the fly. It offers a convenient
abstraction that avoids the need to directly modify the bytecode yourself.

Another freely available tool is AspectWerkz (http://aspectwerkz.codehaus.org), an open
source project sponsored by BEA’s JRockit development team. AspectWerkz is a dynamic, light-
weight, and high-performance AOP/AOSD framework for Java. It utilizes runtime bytecode
modification to weave classes at runtime. It hooks in and weaves classes loaded by any class
loader except the bootstrap class loader, with special support for runtime weaving using JRockit,
allowing the addition, removal, and restructuring of advices as well as swapping the implementa-
tion of introductions at runtime.

Bytecode instrumentation is also used by many commercial tools such as Introscope
from Wily Technology (www.wilytech.com). This tool provides a real-time performance
monitoring solution for application servers. On-the-fly bytecode instrumentation is used
to provide a lot of performance data that is not accessible through application server
vendor–specific tools.

JFluid is an experimental dynamic bytecode profiler from Sun (http:// research.sun.com/
projects/jfluid/). It can be used to profile an arbitrary subset of your Java program and
be activated/deactivated while the program is running. Unlike the other tools above, it
requires the use of a special version of the HotSpot VM that supports dynamic bytecode
instrumentation.

The JRockit JVM provides an interface to make it easy for you to plug in your own class
preprocessor. In other words, rather than requiring a special class loader, you register your
own implementation of the com.bea.jvm.ClassPreProcessor interface, which has only one
method:

public byte[] preProcess(java.lang.ClassLoader classLoader,

java.lang.String className, byte[] classBytes)

where the method parameters are the class loader instance used to load the class in question,
the name of the class, and the byte array that represents the bytecodes of the class. A class
preprocessor may be registered in the JVM instance using:

JVMFactory.getJVM().getClassLibrary().setClassPreProcessor

(preProcessor);

A simple example of how to use a preprocessor can be found at http://dev2dev.bea.com/
products/wljrockit81/resources.jsp.

The Java Virtual Machine Profiler Interface
Many of today’s Java profiling tools use the experimental Java Virtual Machine Profiler

Interface. JVMPI defines a bidirectional interface between a JVM and an in-process profiler
agent. This agent sends profiling data to the profiler front end, which displays information
on CPU usage, memory allocation, object references, and monitor contention. JVMPI is used
by both Borland’s Optimizeit Profiler (includes a memory and CPU profiler) and JProbe from
Quest Software.

Hprof (http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html#hprof) is a JVMPI
profiler agent shipped with many JDKs. It uses the JVMPI to gather information about a running
JVM and writes out profiling information either to a file or to a socket.

HPjmeter from Hewlett-Packard is a useful free tool that allows you to read (and
compare) the output files from hprof (www.hp.com/products1/unix/java/hpjmeter/
index.html). Another useful tool from HP (not based on JVMPI) is HPjtune, which
can be used to read the GC metrics in the log files produced by the Java VM (output of
-Xverbosegc).

Profiling Your Java Code

by Jeremy Geelan

34 April 2004 www.SYS-CON.com/JDJ

‘Professional
Open Source’

his past February David Skok’s new VC

firm – Matrix Partners – orchestrated, with

Accel, a $10 million investment in JBoss,

Inc. This first round of funding in an open source

company was a bold play, but then David Skok,

famous in the Java arena as the founder of

SilverStream Software – acquired by Novell in

2002 – is no stranger to bold moves.

The first question then, naturally enough, is to ask Skok whether
this investment is somehow a contradiction, or whether there is indeed
money to be made from open source?

“We think that there’s definitely money to be made,” Skok says with-
out hesitation. “Red Hat’s a clear example,” he adds. “They’re now prof-
itable on around a $100m annual revenue run-rate. And we’re still in
the early days of the open source movement.”

Curious about the business model he sees underlying OSS, I ask him
how he usually explains it to fellow members of the investment com-
munity.

There are two business models, Skok explains, “dual license” and
“support.”

“In the dual license model,” he continues, “followed by companies
such as MySQL, software is available free with a restrictive GPL
license, and available for a small fee with a less restrictive commercial
license.

“You also see companies like SourceFire,” Skok adds – they are the
ones who developed Snort, the network intrusion detection system –
“offering an upgrade product to Snort for a fee.”

Then there is the second model, the support model. “JBoss follows the
support model,” Skok says. “What they call ‘Professional Open Source’.”

Customers Want a ‘Throat to Choke’
There’s one compelling reason why this model is so successful,

Skok notes. “It’s driven by a very important customer demand: the
customer wants a ‘throat to choke’ when they move from develop-
ment into production, and know that they can only get accountabili-
ty and guaranteed response times if they pay for support.”

Is “Professional Open Source” the wave of the future? I ask.

Investing in

EXCLUSIVE JDJ INTERVIEW WITH

DAVID SKOK
GENERAL PARTNER, MATRIX PARTNERS

EXCLUSIVE JDJ INTERVIEW WITH

DAVID SKOK
GENERAL PARTNER, MATRIX PARTNERS

T

35April 2004www.SYS-CON.com/JDJ

“Open source should be thought of as a
different way of developing software,” Skok
replies. “With Professional Open Source, we
should stop seeing open source developers as
unemployed student types wearing
Birkenstocks. Specifically, open source for
middleware software makes a lot of sense
because it’s the most open/naked state of
code and the peer review process leads to
very robust, fast, and open stacks.”

Given that open source is fast becoming a
multimillion-dollar – most likely a multibil-
lion-dollar – business, I ask Skok who the
stakeholders are who can expect to benefit.

“I think that the greatest beneficiaries are
customers and independent software ven-
dors (ISVs) who will benefit from high-quali-
ty, royalty-free platforms,” he replies.

Skok then adds a thought about profitabili-
ty, for open source and profit are not mutual-
ly exclusive it seems. “One of the things that
impressed us most about JBoss,” he says, “is
that it has been profitable since the begin-
ning, and expects to continue operating that
way into the future.”

The $10 million capital was primarily
raised to strengthen their balance sheet, Skok
explains, reassuring customers that they are
dealing with a company that is here for the
long term. “They will also use the capital to
expand operations into more regions and
scale up support capabilities,” he adds.

On a technical note, while JBoss has
always been applauded for being robust and
scalable, it’s never had a GUI-based IDE, thus
leaving the mass marketplace solely in the
hands of closed source competitors. So I ask
Skok what he thinks about the recent idea of
plugging JBoss into the Eclipse development
framework, making the product a legitimate
option for the thousands of developers who
prefer a GUI. Will that transform JBoss’s for-
tunes from niche player to mass-market
player, does he think? Does that partly
explain the timing of this investment?

“In today’s market,” Skok answers, “it’s no
longer necessary to get GUI tools and an app
server from one company. In addition to the
Eclipse project, JBoss is already integrated in
all leading IDEs: JBuilder X, Compuware
OptimalJ 3.0, Eclipse, IntelliJ, and so on.

“I keep speaking to new startups that are
coming out with hot new GUI-based devel-
opment tools for things like UI develop-
ment, and building XML services-oriented
applications,” he continues, “and they all
tell me that they are planning to ship with
JBoss as the default application server.
They tell me that they initially picked
JBoss because it’s royalty free, but they
then grew to love it because it’s highly sta-

ble and has a very compact, modular
architecture.

“The surveys that we discovered during
our due diligence,” Skok adds, “showed that
JBoss was number one in terms of both
developer and OEM/ISV usage, and had
grown its enterprise market share to 27%. In
the last year, they had grown their market
share more than twice as fast as either BEA or
IBM. They have managed to attract an
incredible base of ISVs including companies
like Apple Computer, Sterling Commerce,
and Mercury Interactive to name just a few.
Those were some of the key factors behind
our decision to invest.”

‘Disruptive’ Open Source Is the Future
Is the JBoss, Inc., business model, though –

i.e., charging for support – the perfect busi-
ness model, or does Skok expect to need to
tweak it moving forward to ensure that the
Matrix/Accel $10 million is leveraged to the
max?

“We believe that their business model is
the right one for today and the future,” he
maintains. “It’s totally in tune with what cus-

tomers want, which is low ownership costs
for software, and a fully accountable vendor
for support.”

It’s also a very nice business model finan-
cially, he adds, as support contracts are gen-
erally renewed, “so you end up with a very
predictable revenue stream that only grows
over time.”

However, as with any business, Skok points
out, “It’s important to keep listening to the
customers to see if there are tweaks that are
needed going forward.”

What about the wider picture, beyond
JBoss – does Skok expect a wave of VC money
to now pile into open source in the next five
years in the same way as it did, say, to the
wireless space in the past five years? Or does
he think it will be an altogether more cau-
tious process, more on a case-by-case basis?

“Open source is very hot right now,” he
says, “driven by the clear success of Linux in
the enterprise. We have IBM to thank for that;
I’ve heard that they’ve committed $2 billion
to Linux marketing.”

Wishing to further explore the whole Linux
phenomenon, I ask him why he thinks it has
taken off so astonishingly. He explains that
the key to it, according to the customers he
speaks to, is the financial attraction of escap-
ing lock-in. “Customers tell me that they’re
attracted to Linux because of ‘Intel
Economics’ – the ability to ride the price
curve of Intel-based computing, as opposed
to being locked into proprietary Unix plat-
forms like Sun,” Skok says.

“The initial open source successes are
Linux and Apache,” he continues. “However,
customers are looking at the rest of the infra-
structure stack and realizing that there are
the same cost and lock-in avoidance benefits
to be had.”

Skok ranks JBoss as one of the four
greatest open source opportunities right
now: “The two leading companies, behind
Red Hat and SUSE, that will benefit next
are JBoss and MySQL. There will be oth-
ers, but it’s my belief that only a few will
be big enough for venture capital style
returns.”

What about the whole open source versus
proprietary debate: Does Skok think it’s opera-
tionally – and legally – feasible to commingle
the two types of software? Or does he fear like
many that we’re just ushering in an era of
energy-sapping litigation, as IP issues are con-
tested by teams of lawyers in the courtrooms
of America and indeed the world?

There are a couple of main bumps in
the road, Skok reckons: one is the GPL and
the other is the whole question of intellec-
tual property. “Users of open source need
to watch out for the GPL license, which
can require that they open source their
own software under certain circum-
stances,” he notes. JBoss, Skok adds, uses
LGPL (Lesser GPL), which eliminates this
problem.

The SCO lawsuit, says Skok, highlights the
second issue – whether you’re protected from
IP problems. “JBoss solves this problem by
indemnifying its customers against those lia-
bilities. Novell and HP have chosen to do the
same thing for their customers buying
Linux.”

What does JBoss, Inc.’s, newfound
“Professional Open Source” status do to the
whole landscape – do proprietary app server
giants, like IBM’s WebSphere, BEA’s WebLogic,
and Oracle’s IAS 10g need to worry that JBoss
will make them redundant, I wonder.

“JBoss (and open source in general)
is highly disruptive to the business
models of those vendors,” Skok replies.
“The recent recession put an extreme
focus on costs, and forced IT to look for

JDJ Industry Profile

Is there money to
be made from open

source? ‘Dual license’
and ‘Support’ ”

“

36 April 2004 www.SYS-CON.com/JDJ

ways to do more with less. In the late ’90s
it was cool to tell your friends about the
latest Sun E10k box that you had pur-
chased for over a million dollars. Now it’s
cool to tell them how much money you’ve
saved your company by deploying Linux
on commodity Intel boxes.”

Skok tells me how he’s spoken to several
customers who had initially chosen
WebLogic or WebSphere as their app serv-
er of choice, and then switched to JBoss
“because of the extraordinary cost sav-
ings,” as he puts it.

“Their developers had all recommended
JBoss as their preferred product,” he adds. “It
took a budget squeeze for them to take a
chance and try it, but once they saw how
good the product was, they weren’t going
back.”

Technology Startups: Then and Now
Much has changed in the world of

technology and business since Skok
founded SilverStream as “The eBusiness
Platform Company,” so I was interested
to hear what he felt was different in the

landscape for startups today compared to
how it was then.

“When we founded SilverStream, it was
right when enterprises were starting to use
the Web for business purposes,” he recalls.
“There was untold excitement and promise,
and the future was wide open.

“Enterprises felt a lot of pressure to move
quickly or be ‘Amazoned.’ That led them to
ignore their traditional purchasing habits
and buy from startups to gain a time-to-
market advantage.

“After the bubble,” he continues, “the
pendulum swung too far the other way. No
one wanted to buy from startups, and all
the shelfware had eroded trust in sales
promises of magical business gains. The
pendulum is starting to swing back to nor-
mal, but it’s still an extraordinarily tough
environment. Products have to provide
really clear demonstrable value and signifi-
cant ROI in a short period of time. Lots of
reference-able customers are crucial, and
frequently startups need a channel partner
to help solve the ‘safe choice’ problem.”

In those days, Skok recounts, it was essen-
tial to build market share quickly, at any cost:
all focus was on revenue growth, and prof-

itability was considered very unfashionable.
“These days,” he says, “the focus is on capital
efficiency, building businesses with the mini-
mum amount of capital.” That means a
strong focus on expense control. Rushing to
get to market is less important than really
getting the product right and making the
customer totally satisfied.

“We’re back to the days where it will take
four to five years to build a real company,
and the only people starting them are
those with a true passion for the technolo-
gy and their customers,” adds Skok. “I’ve
always believed that the only way to make
money is not to focus on making money,
but to focus on building real value and
making your customers happy. In the bub-
ble, we had lots of the wrong kinds of peo-
ple starting companies, trying to make a
quick buck.”

So much for what’s different. But there
must be similarities too, “eternal truths” of
the startup game, if you will.

Skok agrees. “What hasn’t changed is that
you still need to focus on building an excep-
tional management team consisting of only A
players,” he says.

“A players attract other A players;

B players attract C players. The
difference in performance between
an A player and a B player is enormous,
whether it be development, sales, or any
other function.

“Over many years,” Skok says, “VC firms
have collected a lot of wisdom about what it
takes to succeed. The key ingredients that we
look for are:
1. An outstanding management team
2. A market that is feeling real pain, that is

large and growing
3. Long-term sustainable differentiation/

barriers to entry

I ask Skok what was it like at first for him
personally, transitioning from serial entre-
preneur to VC? “I guess it was like moving
from being a parent to a grandparent,” he
replies.

“As a parent you have constant day-to-day
involvement with the child including all the
highs and lows (changing nappies, etc.). As a
grandparent, you’re less involved, get to share in
some of the fun, but also have less of the day-to
day-stress. The biggest change is switching from
making all the decisions to becoming an advi-
sor and mentor to the CEO.”

JDJ Industry Profile

Open source should be thought of as a different way of developing software.
With Professional Open Source, we should stop seeing open source

developers as unemployed student types wearing Birkenstocks”
“

37April 2004www.SYS-CON.com/JDJ

Technology Insights
He doesn’t own businesses outside of tech-

nology. “I think my expertise is limited to the
technology field, so other than professionally
managed stock market holdings, I have
stayed away from other investments. My job
also requires total focus and doesn’t leave
much time for anything else.”

So he doesn’t object when I ask him to
name one thing that Java has gotten com-
pletely right – and, conversely, one thing in
Java’s history he wished had turned out dif-
ferently.

“Java got two things right,” Skok says. “First,
platform independence – which means the
same app will run on any platform
unchanged. And second, standardization –
which means vendor choice and competition.”

What Java has gotten wrong, in his opin-
ion, is that “it has become too complex.”

“That complexity is necessary in certain
respects (as distributed applications are
complex in nature). Expert developers
appreciate the need for this. However, not
enough attention has been paid to simpli-
fying development, and making Java more
accessible to a less expert audience who I
believe make up at least 60% of the corpo-
rate developer audience.”

The most promising answer to the over-
complication of J2EE, Skok adds, is some-
thing JBoss introduced in their 4.0 release:
aspect oriented programming.

“AOP has the potential to greatly reduce the
complexity, allowing developers to add capa-
bilities like persistence, remoting, security,
transactional integrity, and so on, to plain old
Java objects (POJOs) without the complexity of
today’s EJBs. This is close to the .NET
approach. JBoss is working hard on the EJB 3.0
specification to help bring in these kinds of
advances. They’re hopeful that that group will
find a way to make enterprise Java easier to
use. This is important to keep the overall mar-
ket share of Java versus .NET.”

In addition, Skok believes that the J2EE
world needs high productivity GUI tools for
less expert developers in the area of UI devel-
opment. Things to help them graphically
design page flows, and build data-bound
forms and reports.

“Today .NET is the only serious challenger to
Java in the enterprise,” he says. “I’m less hope-
ful for Java on the client so long as Microsoft
continues to fight it. But I haven’t written it off.

I think that we’ll continue to see both .NET and
Java as competing platforms in the foreseeable
future. Web services will greatly increase inter-
operability.”

What’s his response to those who argue
that Sun has somehow lost its moral right
to exercise exclusive control over Java and
that Java ought now to be open sourced?
“I’m in favor of open sourcing the source
code for the Java reference implementa-
tions, but allowing Sun to retain the rights
to the Java brand. Sun could still maintain
control over the verification and certifica-
tion of products based on them passing
Sun’s compliance tests. That model will
dramatically improve the quality of Java,
give developers the comfort that they are
not playing in a totally Sun-controlled

world, and have the ability to contribute
to the reference implementation, while
still leaving Sun a way to make money out
of Java.

“In my opinion that would increase the
acceptance of Java in the market, and reduce
the chances of success for competitive lan-
guages like C#.”

Beyond Java: Technologies to Watch
Wearing his new generalist hat as a general

partner at Matrix Partners, Skok has a bird’s
eye view of hot investment areas beyond the
Java world. Several areas are really interesting
right now, he says: utility computing and dat-
acenter virtualization, wireless and mobility,
offshoring, RFID, and security, to name just a
few.

“I’m personally very excited about the
opportunities around the datacenter,” Skok
explains. “It’s clear that today’s datacenters
are way too complex to manage, and can’t
respond fast enough to changing business
needs.”

The datacenter of the future, he believes,
will be very different: there will be a big pool
of storage, a large pool of processors, and a
big network pipe coming into a lights-out
facility.

“You’ll only need to go in there to add
new processors/disks or to remove broken
units. New virtual computers will be creat-
ed out of these pools via a simple GUI.
These virtual computers will share
resources from the pools, but will be isolat-
ed from one another. They will be dynami-
cally allocated more or fewer resources as
demand grows and shrinks. My investment
play in this area is a company called
Katana.”

“RFID is also very hot right now,” Skok
says, “driven by a mandate from Wal-Mart
that its top 100 suppliers have to start ship-
ping them pallets that are identified by RFID
tags.

“This was followed by a similar mandate
from the Department of Defense. That has
kicked off a mad scramble by their ven-
dors to become RFID enabled. We’ve
invested in a company called OAT
Systems, and they are overwhelmed with
customer demand.”

Infosecurity is another interesting area,
he says. “One of the driving forces is regu-
lations such as HIPAA, GLBA, etc. We’re

I’m less hopeful for Java on the client so long as Microsoft continues
to fight it. But I haven’t written it off”“

38 April 2004 www.SYS-CON.com/JDJ

seeing a fair number of business plans focused on auditing
and protecting access to information assets in databases, files,
and so on.”

Skok has also spent a lot of time investigating grid computing. “I’m
less enthusiastic in the short term, though,” he says. “Grid computing
today works best for technical computing applications where the
workload can be easily split into modules that can be run remotely in
parallel. It also requires that applications be rewritten to support a
Grid API (OGSA being the key standard).

“When I look at enterprises, I see mostly applications that cannot be
run remotely as they all require access to a single database, and I see a
huge reluctance to rewrite applications. What’s more interesting to
enterprises is the utility computing model where they can run these
applications unchanged on a shared infrastructure that responds
dynamically to changing workloads. That will be a much bigger market
in the short to medium term.”

Over time, grid computing could become more interesting, he
conceded – “as we move to highly modularized applications built
out of Web service components.”

Skok ends by stating how VCs feel about the current environment,
after going through the tech recession of the last few years.

“There’s a definitely increased optimism right now. We’re starting
to see companies meeting or beating their plans once again. As an
example, one of my portfolio companies, Netezza, had a very
aggressive forecast for its fourth quarter, and was able to bring in

bookings that were double that target. We haven’t seen that in a
long time.

“The public markets are getting better, and will be helped by
the IPOs of Google and Salesforce.com. And there is a lot of
M&A activity.

“Off-setting that positive news,” Skok adds, “we still have an
environment where there is too much venture capital chasing too
few deals; an overhang from the bubble. This means that there is
overfunding in hot areas. As an example, there were no less than 64
companies building WiFi chips when we last counted. I predict
that in
the long run only the top-tier venture firms will make money and
survive. They have access to the best deals, and have the most
experience in helping those companies build for success and avoid
pitfalls.”

Finally, is there such a thing as an “ultimate software solution”
– or does Skok view that as a mere mirage?

“I guess it would have to be a system where you could think
at it, and have it interpret your thoughts to build fully functional,
scalable, reliable, secure applications automatically,” he says.
“It would also want to behave more like biological systems:
i.e., be autonomic (self-healing), able to detect changing
needs in the environment, and suggest ways to evolve itself.

“Is that a mirage? For the time being, I guess so…”

JDJ Industry Profile

The datacenter of the future will be
very different: there will be a big pool
of storage, a large pool of processors,
and a big network pipe coming into

a lights-out facility”

“

previewing may 11, 2004,
at networld+interop, las vegas

Information

StoragE
+

Security
Journal!

for more information visit
www.ISSJournal.com

From the World’s Leading i-Technology Publisher

©COPYRIGHT 2004 SYS-CON MEDIA. ALL BRAND AND PRODUCT NAMES ARE TRADE NAMES,
SERVICE MARKS OR TRADEMARKS OF THEIR RESPECTIVE COMPANIES.

40 April 2004 www.SYS-CON.com/JDJ

opy-paste coding is a kind of mis-
guided code reuse. You have a
problem to solve and you see a
similar problem and its solution

in your existing body of code. So you
copy and paste the solution, and make
the necessary modifications so that the
solution matches your current problem.

Here’s an example to make this more
concrete: you’ve written a system that
allows departments in your organiza-
tion to analyze their productivity; each
department has its own ideas about
what it wants, so each has its own
domain logic. The sales department
wants to be able to export data from
the system into a planning tool. After a
few months in production, the person-
nel department spies this particular
feature and says they would like it as
well. No problem, says your boss; we
already have that functionality in the
system so we can make it available to
you in the next maintenance release.
Your boss then arrives at your desk one
morning asking you to make this modi-
fication, assuming it won’t take long
because you already have the code.

The problem is that functionality,
which is intended to be specific to one
business domain, is not usually written
generically. The ideal solution would be to
rewrite the code to export to a planning
tool as a generic component that can be
configured for multiple business domains.
However, doing it properly means you
can’t make the deadline that your boss
has promised to the customer. Your only
option is to take a copy of the existing
code, say as a new class, and then modify
that copy for the personnel department’s
specific requirements. This results in two
different classes that share a similar func-
tional structure, but whose details vary
according to the business domain.

What’s the Problem with
Copy-Paste Coding?

It’s a bit ugly, but is there any real
problem with copy-paste coding? Yes!
The list is long, but I’ll concentrate on

the two major issues. Each time you
copy something, you are adding some-
thing to your maintenance burden. In
the above example, if the planning tool
was upgraded, in the worst case scenario
(which in my experience is the normal
case!) each copy of the exporting code
would need to be modified. If the organi-
zation has standards concerning test
coverage, these code repetitions would
require individual testing. These are all
very practical concerns for a developer.

There is also an issue of principle:
tailoring the export code for each busi-
ness domain leads to tight coupling
between the export code and the busi-
ness domain. Changes to the business
domain could have unexpected reper-
cussions for the exporting feature.

What Can You Do About It?
Are we stuck with multiple copies of

very similar code? Is the only alternative a
full-blown refactoring of the code into a
generic component? No! There is a middle
road that ensures that only one version of
the repeated code exists. With a decent
refactoring tool such as Eclipse’s JDT or
IntelliJ’s IDEA, it’s easy to refactor the
existing code into a maintainable, loosely
coupled version in a relatively short time.
The approaches I’ll describe have these
nice properties without having the flexibil-
ity that a more generic component might
have. In my experience, there are three
overall solutions; in practice a combina-
tion of these solutions is often needed.

All three solutions rely on analyzing
corresponding methods. I often find
that the easiest way to do this is to print
out the relevant methods and then look
at them side by side. This way it’s easier
to see which lines are common to both
methods and which lines are domain
specific; I usually draw boxes around
the domain-specific lines.

Solution 1: Helper Classes
If the two methods contain similar or

identical nondomain-specific code, they
can be moved to a helper class.
Continuing the earlier example, two dif-
ferent departments in an organization
export data to the same planning tool,
based on their own information. The
personnel department’s export is imple-
mented using the class PersonnelInfo
Exporter shown in Listing 1. (Listings 1–6
can be downloaded from www.sys-
con.com/java/sourcec.cfm.) The sales
department’s export is implemented
using SalesInfoExporter, shown in Listing
2. The details of the planning tool are not
really important to this article.

Looking at these two classes, the
similarity between the two export
methods is quite striking. The structure
for both is identical: initialize the tool,
populate the tool with data, and termi-
nate the tool. For PersonnelInfo
Exporter the three tasks are, respective-
ly, on lines 18–22, 23–64, and 65–67;
SalesInfoExporter has these tasks on
lines 16–20, 21–51, and 52–53.

The Perils of
Copy-Paste Coding
Three approaches that help make it work

TECHNIQUES

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Paul Mukherjee

C

Paul Mukherjee
is a Sun Certified

programmer and developer.
He works as a consultant

software architect for
Systematic Software

Engineering in Denmark.

pmu@systematic.dk

To quote Martin Fowler, “Refactoring is the
process of changing a software system in such a
way that it does not alter the external behavior of
the code, yet improves its internal structure.” In
practice, this means taking something that works
and improving its design so that it’s easier to
maintain, extend, debug, and so on. In this arti-
cle I refer to a number of standard refactorings,
details of which can be found at the refactoring
Web site in the references list.

Refactoring

T
w

o
ye

ar
s

w
it

h
ou

t
a

va
ca

ti
on

.
T

h
e

ap
pl

ic
at

io
n

’s
 u

p.
It

’s
 d

ow
n

.
It

’s
 u

p.
It

’s
 d

ow
n

.

I’
m

 t
o

bl
am

e.
S

te
ve

’s
 t

o
bl

am
e.

S
om

eo
n

e’
s

al
w

ay
s

to
 b

la
m

e.
N

ot
 a

n
y

m
or

e.
G

et
 W

il
y.

™

©
20

03
 W

ily
 T

ec
hn

o
lo

g
y,

 I
nc

.
T

he
 W

ily
 lo

g
o

 is
 a

 t
ra

d
em

ar
k

o
f

W
ily

 T
ec

hn
o

lo
g

y,
 I

nc
.

Ja
va

 is
 a

 t
ra

d
em

ar
k

o
f

S
un

 M
ic

ro
sy

st
em

s
in

 t
he

 U
.S

.
an

d
 o

th
er

 c
o

un
tr

ie
s.

E
n

te
rp

ri
se

 J
av

a
A

pp
li

ca
ti

on
 M

an
ag

em
en

t

1
88

8
G

E
T

 W
IL

Y
w

w
w

.w
il

yt
ec

h
.c

om

42 April 2004 www.SYS-CON.com/JDJ

TECHNIQUES
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

This structure suggests that the first
and third tasks have little to do with the
actual domain-specific data being
exported, so we should be able to extract
methods for initializing and terminating
the tool. A refactoring tool should make
this straightforward. In this case, the
application of the refactorings Extract
Local Variable, Extract Method, and
Inline Temp leads to two methods:

public PlanningTool

initializeTool(String title,

int numColumns) {

PlanningTool planningTool =

PlanningTool.openConnection();

planningTool.createChart(title,

numColumns);

return planningTool;

}

public void terminateTool(

PlanningTool planningTool,

String footer) {

planningTool.setFooter(footer);

planningTool.closeConnection();

}

Since neither of these methods is
specific to a domain or uses instance
variables, they can be moved as static
methods to a helper class, in this case
ExportHelper, as shown in Listing 3. The
new SalesInfoExporter is also shown in
this listing; similar changes would be
made to PersonnelInfoExporter. These
methods are static as it makes their
state-independence explicit.

Solution 2: Inheritance
If two methods contain several simi-

lar portions of domain-specific code, I
use the Template Method pattern by
applying the Form Template Method
refactoring.

The first stage in this refactoring is to
extract the domain-specific parts of the
method into separate methods. For
instance, if we look at the

SalesInfoExporter in Listing 3 we can
see that its algorithm is as follows:
1. Initialize the tool with the title and

number of columns (lines 24–26)
2. Fetch data for the period (lines 27–28)
3. For each year in the period:

• Create an empty list (line 34)
• For each column, add the data item

for the column to the list (lines
35–53)

• Add the data series consisting of this
list and year to the tool (lines 54–56)

4. Terminate the tool with the footer
text (lines 58–59)

Those parts of the algorithm that are
domain specific are underlined and
will be refactored as methods using the
Extract Method refactoring. For exam-
ple, I’ll create a method getTitle():

protected String getTitle() {

return "Sales Statistics for Period ";

}

The corresponding part of the export
method is:

PlanningTool planningTool =

ExporterHelper.initializeTool(

getTitle() + startYear + "-" +

endYear,

getNumberOfColumns());

When doing this type of refactoring, I
try to use method names that indicate
the role performed by these lines in the
original methods. Using this approach,
it’s easy to extract the methods
getTitle(), getNumberOfColumns(), and
getFooterText().

However, this still leaves the body of
the loop unresolved; what can we do
about getting the data item for the cur-
rent column? One approach would be
to create a method called getDataItem
(Object obj, int column), which takes the
object currently iterated over and gener-
ates the corresponding data item for the
column. This would work, but in my
experience working with Object
instances and then upcasting to the class
we are interested in indicates that the
design lacks something. In this case it’s
most natural to create an interface repre-
senting an object that can be exported:

public interface IExportableData {

public int getColumnCount(int column);

public String getTitle(int column);

public Color getColor(int column);

}

I can then create a PlanningTool.Data-
Item object from an IExportableData

object. There is now a design issue: Does
the export of data fall under the respon-
sibility of SalesInfo and PersonnelInfo,
respectively? This depends on the specif-
ic applications; if it does fall under their
responsibility, it’s appropriate that the
corresponding classes implement
IExportableData directly. Otherwise it’s
more appropriate to create implementa-
tion classes of IExportableData (e.g.,
ExportableSalesInfo and Exportable
PersonnelInfo), which, respectively, dele-
gate to SalesInfo and Personnel Info. In
this example I’ve chosen the former
solution; for example, the new SalesInfo
class can be seen in Listing 4.

With this interface in place, the last
piece of domain-specific functionality
is the retrieval of the list of data for the
given domain. We create a hook for this
that the implementations use to call
the corresponding controller. For
example, for SalesInfo:

protected List getDataForPeriod(

int startYear, int endYear) {

return new SalesController().

getSalesInfo(startYear, endYear);

}

After this refactoring, exportSales
Info() contains no domain-specific
code. The approach now is as follows:
1. Create an abstract superclass (Abstract

Exporter); domain-specific subclasses
(SalesInfoExporter and PersonnelInfo-
Exporter) should extend it.

2. In the abstract superclass, create
abstract methods for each hook (get
Title(), getColumnCount(), getDataFor-
Period(), and getFooterText()).

3. Move the method (exportSalesInfo())
from the subclass to the superclass,
possibly renaming to remove
domain-specific connotations.

That’s it!
AbstractExporter is shown in Listing

5 with the refactored SalesInfoExporter
class.

Note that sometimes the renaming
part in stage 3 might not be possible
(for example, if a particular interface is
to be implemented or preserved). In
this case the method should just call the
superclass method, as shown below:

public void exportSalesInfo(

int startYear, int endYear){

exportInfo(startYear, endYear);

}

This refactored design is a major
improvement over the original one:
there is now very little repetition, the

The Template Method pattern is one of the
original Gang of Four design patterns (Design
Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, et al). This pattern cap-
tures common functionality in an abstract super-
class, and domain-specific functionality is located
in concrete methods in the subclass known as
hooks. These hooks are defined as abstract meth-
ods in the superclass and can therefore be
referred to from there. See the references at the
end of the article for more information about this
very useful pattern.

Template Method Pattern

43April 2004www.SYS-CON.com/JDJ

separation of responsibilities is much
clearer, and the code performing the
export and the data to be exported are
now loosely coupled.

One practical issue that often arises
is that it isn’t always possible to choose
the superclass of a class; for example, if
the class has to extend a specific super-
class to fit into a particular framework.
In this case we choose solution 3.

Solution 3: Delegation
This solution is very much a varia-

tion of solution 2 but instead of using
inheritance, delegation is used. There
are four steps.

First, an interface defining the hooks
described in the previous section (lines
36–41 in Listing 5) should be created:

public interface IExporter {

public String getFooterText();

public List

getDataForPeriod(int startYear,

int endYear);

public String getTitle();

public int getNumberOfColumns();

}

Next, the classes SalesInfoExporter
and PersonnelInfoExporter should

implement this interface; the implemen-
tations from solution 2 (e.g., lines 46–59
in Listing 4) should be made public. The
third step is that the abstract superclass
from solution 2 should be concrete and
have an IExporter instance variable. The
hooks that were previously in this class
should be removed, and calls to them
replaced by calls to the corresponding
methods on the IExporter instance vari-
able. This is shown in Listing 6.

Finally, the export methods in
SalesInfoExporter and PersonnelInfo-
Exporter should create an instance of
AbstractExporter and call its
exportInfo() method. For example:

public void exportPersonnelInfo(

int startYear, int endYear){

new AbstractExporter(this).

exportInfo(startYear, endYear);

}

SalesInfoExporter and Personnel-
InfoExporter could be further decou-
pled from AbstractExporter using an
Inversion of Control pattern (see the
list of references for more details).
The idea behind solution 3 is exactly
the same as solution 2. However, their
structures differ according to whether

inheritance or delegation is more
suitable.

Closing Remarks
The techniques described in this arti-

cle are practical ones that I have found
useful on a number of projects. Copy-
paste programming is easy and helps to
provide something that works, fast.
However, as soon as the first copy-paste
phase is complete, it’s important that
the techniques described in this article
are applied before the problem with
repetition gets out of hand; the sooner
the problem is addressed, the easier,
quicker, and cheaper it is to resolve.

References
• Refactoring: www.refactoring.com
• Template Method Design Pattern:

www.javacamp.org/designPattern/
template.html

• The IDEA Tool: www.intellij.com/
docs/IDEA_30_Overview.pdf

• Eclipse’s JDT Tool: www.eclipse.org
• Refactoring in Eclipse: www-106.ibm.

com/developerworks/opensource/li
brary/os-ecref/

• Hammant, P. “Inversion of Control
Rocks.” Java Developer’s Journal,
Vol. 8, issue 12.

44 April 2004 www.SYS-CON.com/JDJ

ava security is an overwhelming issue. For a truly secure

application, you need to prevent hackers from entering

the system, and you need to ensure that code safeguards

security if a hacker does break in. Moreover, there is no room

for error. If you anticipate and prevent hundreds of security

vulnerabilities but overlook just one, a hacker can still wreak

havoc on your system.

This article introduces some fundamental strategies for
writing Java code that remains secure if a hacker manages to
enter the system. Essentially, writing secure code requires a
shift in thinking. Instead of worrying about whether code
works correctly, you need to anticipate all of the ways that it
can be exploited, then ensure that security is maintained in
every possible worst case scenario. This, of course, is a monu-
mental task, and there is no silver bullet for security. Several
strategies for developing Java code that resists many common
attacks are:
• Follow coding guidelines for preventing security attacks
• Code defensively to prevent hackers from propagating

through the code
• Expose and correct as many bugs as possible

Follow Coding Guidelines to Prevent Security Attacks
Ensuring that your code complies with the following coding

rules can make your code less vulnerable to security attacks.

Rule 1: Avoid using inner classes
Java bytecode has no concept of inner classes, so the com-

piler translates inner classes into ordinary classes that are
accessible to any code in the same package. An inner class
gets access to the fields of the enclosing outer class – even if
these fields are declared private – and the inner class is
translated into a separate class. To let this separate class
access the fields of the outer class, the compiler silently
changes these fields’ scope from private to package. As a
result, when you use inner classes, not only is the inner class
exposed, but the compiler is silently overruling your decision
to make some fields private.

Note: If you really need to use inner classes, be sure to make
all inner classes private.

Here is sample code that violates this rule:

package examples.rules.security;

public class AUIC {

private class AUIC2 { // VIOLATION

}

}

To correct this code, make the class AUIC2 a top-level class
as follows:

public class AUICF {

}

class AUIC2 { // FIXED

}

Rule 2: Avoid comparing class objects by name
This rule prohibits comparing class objects with the

getName() method. More than one class in a running JVM
may have the same name. As a result, a hacker can create a
class with malicious code and give it the same name as
your class. When you compare classes by name, the com-
parison would not recognize this difference. When you
compare classes by object equality, the difference would be
detected.

Here is sample code that violates this rule:

package examples.rules.security;

public class CMP {

public boolean sameClass (Object o) {

Class thisClass = this.getClass();

Class otherClass = o.getClass();

return (thisClass.getName() == otherClass.getName());

//VIOLATION

}

}

To correct this code, modify it as follows to directly compare
thisClass and otherClass for equality:

package examples.rules.security;

by Adam Kolawa, Gina Assaf, and Roberto Scaramuzzi

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

J

Anticipate and protect every
possible security vulnerability

FEATURE

Dr. Adam Kolawa
cofounded Parasoft with a group

of fellow CalTech graduate
students in 1987. Parasoft
provides Automated Error
Prevention solutions that
combine advanced tools,

services, and expertise that help
companies to automatically
prevent errors and improve

software quality and reliability.
Adam holds a PhD in theoretical

physics from the California
Institute of Technology.

ak@parasoft.com

STRATEGIES FORSTRATEGIES FOR

SECURINGSECURING
JAVA CODEJAVA CODE

Anticipate and protect every
possible security vulnerability

45April 2004www.SYS-CON.com/JDJ

public class CMP {

public boolean sameClass (Object o) {

Class thisClass = this.getClass();

Class otherClass = o.getClass();

return (thisClass == otherClass); // FIXED

}

·}

Rule 3: Make your classes noncloneable
This rule requires that you make classes nonclone-

able by defining a final method clone that will throw
a java.lang.CloneNotSupportedException(). For
example:

public final Object clone() throws

java.lang.CloneNotSupportedException {

throw new java.lang.CloneNotSupportedException();

}

Java’s object cloning mechanism can allow an attacker
to manufacture new instances of classes that you define,
without executing any of the class’s constructors. Even
if your class is not cloneable, the attacker can define a
subclass of your class, make the subclass implement

java.lang.Cloneable, then create new
instances of your class by copying the
memory images of existing objects.
By defining the above clone method,
you’ll prevent such attacks.

Note: If you really need to make
your classes cloneable, be sure
to make your clone() method
final.

Rule 4: Make your classes nonserializable
This rule requires that if you want

to prevent access to the internal
state of your objects, make your class
nonserializable. If you don’t, your
objects can be serialized into readable
byte arrays. As a result, hackers can view
the objects’ full internal state, including pri-
vate fields and the internal states of referenced
objects.

To make a class nonserializable, define the final method
writeObject() that throws an IOException. For example:

private final void writeObject (ObjectInputStream in)|| throws

java.io.IOException {

throw new java.io.IOException ("Class cannot be serialized");

}

This method is declared final so that a subclass defined by
a hacker adversary cannot override it.

Note: If you need to make a class serializable, follow these
tips to safeguard security:
• Use the Transient keyword for fields that contain

direct handles to system resources and other sensitive
information.

• Do not pass an internal array to any DataInput/Data-
Output method that takes an array when defining your
own serializing method for a class.

The source for these tips is “Secure Programming for
Linux and Unix HOWTO” by David Wheeler (www.d
wheeler.com/secure-programs/Secure-Programs-HOW
TO/java.html).

Rule 5: Do not depend on package scope
This rule prohibits classes with public or package-

private access. An attacker can simply add another class
to your package and then access package-private fields
that were supposed to be hidden.

To correct violations of this rule, modify code so that it
does not rely on package-level access. Give your classes,
methods, and fields the most restricted access possible. If
this is not an option, you might want to use package sealing,
which can prevent hackers from adding classes to a package

that is in a “sealed” JAR file. Package seal-
ing is discussed at http://java.sun.com/

j2se/1.3/docs/guide/extensions/spec.
html#sealing.

Rule 6: Avoid returning references
to mutable objects and, if necessary,
clone the mutable object before
returning a reference to it

Mutable objects are objects
whose states can be changed.
When you return a reference to a

mutable object, the caller can
change the state of that object; if

that object is used in the class later
on, it will be using a different state

of the object, which would affect the
internals of the class.

Note that arrays are mutable (even if
array contents are not mutable), so don’t return a reference
to an internal array with sensitive data.

Here is sample code that violates this rule:

// fDate is a Date Field.

// The caller of this method can change the Date object and

// affect the internals of this class.

public Date getDate() {

return fDate;

}

Roberto Scaramuzzi is a
software engineer at
Parasoft. He grew up
professionally as a Perl
developer, but is now also
adept at Java and PHP.
Roberto holds a PhD in
mathematics.

Gina Assaf is a systems
engineer at Parasoft.
She has been developing,
designing, testing, and
implementing applications
in Java for nearly six years.
She has researched and

developed many of the coding
standards, many of which
provide security for Java
applications. Assaf has a
BS in computer science.

Java code that throws unexpected, uncaught runtime exceptions
is especially ripe for security breaches”“

46 April 2004 www.SYS-CON.com/JDJ

FEATURE
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

To correct this code, modify it to return a defensive copy of
the field as follows:

public Date getDate() {

return new Date(fDate.getTime());

}

Now, the caller of this method can change the returned
Date object without affecting the internals of this class.

Rule 7: Make methods, fields, and classes private; if there’s a rea-
son one should not be private, document that reason

If a class, method, or variable is not private, hackers could
use it as a potential entry point. If there is a good reason
why a method, field, or class should not be private, it does
not need to be private, but that reason should be clearly
documented.

Rule 8: Make all classes and methods final; if there is a reason
one should not be final, document that reason

If a class or method is not final, hackers could try
to extend it in an unsafe way. If there is a good reason
why a method or class should not be final, it does not
need to be final, but that reason should be clearly
documented.

Coding Defensively to Prevent Hackers from
Moving Through the Code

Another way to boost code security is to code defensively
by implementing defensive software firewalls and validating

user/external inputs.
Defensive software firewalls have many uses, one of

which is to ensure that any hacker who manages to
access your code cannot move through critical code sec-
tions. A defensive software firewall is a point in the logical
flow of a program where the validity of logical constraints
is checked. If a constraint specified in a firewall is satis-
fied, execution proceeds. If the constraint is violated,
the firewall triggers, generates an appropriate error mes-
sage, and possibly takes damage-control actions (such
as stopping execution) or diagnostic actions (such as
turning on debugging information). Firewalls should
not alter the execution flow of a program unless they
are triggered, and they should have either no effect or a
negligible effect on the performance of the production
version.

Note that these firewalls are not related to the firewalls
placed around Internet connections. The concept discussed
here relates solely to code construction. If designed carefully,
these firewalls serve the same purpose as physical firewalls:
they can contain a dangerous event and prevent it from caus-
ing a complete disaster.

In Java, firewalls can be implemented by adding assertions
that say that if the program reaches a critical point without exe-
cuting the expected operations, the program should throw
exceptions, shut down, or perform another defensive action.
Hackers often access code from a path that you didn’t know
existed or did not expect to be taken. By using firewalls to
check whether critical program points were reached in unex-
pected ways, you can identify many attempted security breach-
es and stop hackers from entering and manipulating your most
critical code.

To implement these firewalls with assertions, first deter-
mine the critical points in your code, then add assertions
so that when each critical point is reached, the call stack is
checked to verify that the program reached that critical
point by executing the expected sequence of operations.
When a critical point is reached through an unexpected
sequence of operations, the program should throw an
exception and terminate. Once this firewall is implement-
ed, you will have a barrier that prevents hackers from
using “backdoor paths” to gain entry into your most criti-
cal code.

For example, the code in Listing 1 could be added
to verify the call stack before modifying a field in the
database. In this case, the assertTrue method is assumed to
accept an error message and a boolean. If the boolean is false,
the message with an exception will be reported and the pro-
gram will terminate.

Another defensive coding strategy is to validate all
user/external input. When security is an issue, you
should always worry about external inputs. If users
manage to submit the “right” inputs, they could gain
access to program details you hoped to keep private,
prompt the application to crash or enter an unstable
state, or access and modify the database. These inputs
could be created by hackers trying to design inputs that
cause a security breach (for example, by applying a tech-
nique known as SQL injection, where hackers submit
inputs designed to create a strategic SQL string, such as
a string that disables password checking, a string that
adds a new account, etc.). Moreover, these inputs
could also be submitted by well-meaning users who
entered information incorrectly (as a result of a typo
or a copy/paste error) or who simply misunderstood

Design by Contract (DbC) can be used to validate user inputs as well as to
implement firewall-like restrictions that prevent hackers from moving
through the application. DbC was designed to express and enforce contracts
between a piece of code and its caller; these contracts specify what the
callee expects and what the caller can expect.

Typically, DbC is implemented by expressing the code’s implicit contracts
in terms of assertions. Three types of conditions commonly used to create
contracts are:
• Preconditions: To express conditions that must hold true before a method

can execute
• Postconditions: To express conditions that must hold true after a method

completes
• Invariants: To express conditions that must hold true any time a client

can invoke an object’s method

Java tools that support DbC generally have you incorporate specification
information into comment tags and then instrument the code with a special
compiler to create assert-like expressions out of the contract keywords. When
the instrumented code is executed, contract violations are typically sent to a
monitor or logged to a file. The degree of program interference varies. You
can often choose between nonintrusive monitoring (problems are reported,
but program execution is not affected), having the program throw an excep-
tion when a contract is violated, or hand-coding custom actions.

To learn more about DbC, see the following resources:
• Plessel, T. “Design By Contract: A Missing Link In The Quest For Quality

Software”: www.cs.unc.edu/~smithja/MIMS/DataModel/research/
DBC.html

• Interactive Software Engineering. Building Bug-Free O-O Software:
An Introduction to Design by Contract: www.eiffel.com/doc/manuals/
technology/contract/page.html

Design by Contract

47April 2004www.SYS-CON.com/JDJ

what type or format of information they were supposed
to add.

By validating all external inputs, you can identify
improper or malicious inputs as they are submitted
and then prevent the program from using those inputs.
The performance impact and user inconvenience will be
minimal, especially if you consider the potential impact
and inconvenience of having the application unavailable
or functioning incorrectly because a hacker designed and
successfully submitted the “perfect” input.

User input validation could be performed with assertions,
Design by Contract, or if statements. For example, say you
have the following method that accepts a filename as input
from a user, but does not verify whether the filename repre-
sents a valid file.

void method (String filename) {

System.exec("more " + filename);

}

If the user passes filename = "joe; /bin/rm -rf /*", the exe-
cution of that method could delete files. If the application
runs as a regular user, the spawned process (rm -rf) inherits
its privileges, which means that the user can remove only the
files for which he or she has modify permissions. If the appli-
cation runs as root, the spawned process will inherit root
privileges and all files on the hard drive can be removed.

To prevent hackers from performing such disastrous
deletions, this method should verify whether the entered
filename represents a valid file. This verification could be

implemented as a simple check using an if statement as
follows:

void method (String filename){

if (new File(filename).exists()){

System.exec("more " + filename);

}

}

Expose and Correct as Many Bugs as Possible
Every bug that you are not aware of could present hackers

with an opportunity to exploit your system. Each bug repre-
sents unexpected program behavior; if the program is not
behaving as you expect, how can you rest assured that it is
not providing hackers with a way to manipulate your code?

Java code that throws unexpected, uncaught runtime
exceptions is especially ripe for security breaches. Imagine
that when one of your methods receives an input that you
did not expect, it throws an uncaught runtime exception
that’s thrown up several layers in your call stack before
it’s handled, and the handling code exposes some critical
Java code. If a hacker can produce this exception (for
example, by flooding that method with a wide variety and
range of inputs), he or she can then learn about the critical
code.

The best way to expose these types of problems is
to perform what is known as “white-box testing” or
“construction testing.” This testing involves designing
inputs that thoroughly exercise a class’s public methods,
then examines how the code handles the test inputs.

48 April 2004 www.SYS-CON.com/JDJ

FEATURE

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

For example, if you wanted to check whether uncaught
runtime exceptions could cause a class to expose critical
code in methods you think are protected, you would
flood the class’s exposed methods with a wide variety
of inputs to try to flush out all possible exceptions,
examine how the class responds to each exception, and
modify the code so that it does not throw dangerous
exceptions.

If you find errors during the testing phase, you have the
opportunity to fix the problem before an actual security
breach occurs. In fact, this type of testing is best performed at
the unit level because testing each unit (each class) in isola-
tion is the best way to expose the maximum number of errors.
Because unit testing brings you much closer to the errors, it
helps you detect errors that application-level testing does not
always find. Take a closer look at Figures 1 and 2 to see how
unit testing does this.

Figure 1 shows a model of testing an application containing
many units. The application is represented by the large oval,
and the units it contains are represented by the smaller ovals;
external arrows indicate inputs; starred regions show poten-
tial errors.

To find errors in this model, you modify inputs so that

interactions between units force some units to hit the
potential errors. This is incredibly difficult. Imagine stand-
ing at a pool table with a set of billiard balls in a triangle at
the middle of the table, and having to use a cue ball to
move the triangle’s center ball into a particular pocket –
with one stroke. This is how difficult it can be to design an
input that finds an error within an application. As a result,
if you rely only on application testing, you might never
reach many of your application’s units, let alone uncover
the errors they contain.

As Figure 2 illustrates, testing at the unit level offers a
more effective way to find errors. When you test one unit
apart from all other units, reaching potential errors is much
easier because you are much closer to those errors. The dif-
ficulty of reaching the potential errors when the unit is test-
ed independently is comparable to the difficulty of hitting
one billiard ball into a particular pocket with a single
stroke.

To expose the maximum number of errors that pose
security threats, you need to exercise the code as fully
as possible. Unit-level testing is the ideal mechanism for
doing this.

Conclusion
Following the strategies mentioned in this article will pro-

tect your Java code from many common security attacks.
However, these strategies should be viewed as the beginning
of a thorough security strategy, not as a security panacea. You
need to anticipate and protect every possible security vulner-
ability because just one vulnerability can allow a skilled or
lucky hacker to steal classified information or make your
application unavailable. To ensure security, you need to learn
how to identify and repair additional security vulnerabilities;
some places to start are:
• Compaq. Extended Static Checking for Java, SQL Injection

Walkthrough: www.securiteam.com/securityreviews/
5DP0N1P76E.html

• Graff, M.G., and van Wyk, K.R. (2003). Secure Coding
Principles and Practices. O’Reilly.

• Howard, M., and LeBlanc, D. (2002). Writing Secure Code.
Microsoft Press.

• Kolawa, A., Hicken, W., and Dunlop, C. (2001).
Bulletproofing Web Applications. John Wiley & Sons.

• McGraw, G., and Felten, E. (1999). Securing Java. John
Wiley & Sons: www.securingjava.com

• Rao, R. (1999). Writing Secure Java Code. Macmillan
Technical Publishing.

• Sun Microsystems. Security Code Guidelines: http://java.
sun.com/security/seccodeguide.html

• Viega, J., McGraw, G., Mutdosch, T., and Felten, E.
“Statically Scanning Java Code: Finding Security
Vulnerabilities.” IEEE Software (Sept./Oct. 2000).

Listing 1

void method (int a) {

int b;

int value_returned = calculate (a, b);

String user_name = getUserName();

boolean valid_stack_trace =

isValidStackTrace(newThrowable().getStackTrace());

assertTrue("Warning!, Unexpected sequence of operations"

, valid_strack_trace);

// critical call, will not execute if assertion fails.

updateDataBase(user_name, value_returned);

}

Figure 2 Unit testing

Figure 1 Application testing

Application Testing input

Application
potential error

50 April 2004 www.SYS-CON.com/JDJ

ecently I was having a discussion with a colleague
about traditional versus Web clients. Instead of hear-
ing the usual defense about how much easier it is to
deploy and manage a thin client application, his point

was that client/server fails because fine-grained transactions
don’t work.

With a browser-based application, when collecting data the
typical workflow is the user inputting data on a number of
pages and completing the transaction with a final Submit
button. The flow of navigation is tightly controlled by the pro-
gram that may create a session EJB to capture the data
entered by the user. Since all the pages that users can enter
their information on are known and controlled, the session
bean has knowledge of all the data it needs to collect as part
of the overall process. It also has a very obvious transaction
boundary with the final “Submit” request where the changes
become permanent.

By contrast, a traditional client application tends to have
more freestyle navigation. Users are presented with tables or
lists of queried information and from there they open addi-
tional detail screens to manipulate and enter information.
The problem arises because on an edit screen the values of

these objects can be changed. Having confirmed this by clos-
ing the window, does this mean that the update is confirmed
to the database or just locally to the JVM to be committed as
part of a larger transaction? If the value is captured just in-
memory, then everyplace that same object is shown to the
user should also be affected, including the original list that
possibly shows the name in a table column. Any additional
screens that might be used to reedit the same object or show
its details should also be affected by the change. This means
that the object must be uniquely identified within the Java
program, so some kind of single instance management is
required.

What if during the transaction the user performs another
object query? The user could expect this to be a mixture of
persistent data merged with any local changes he or she has
made (as yet uncommitted). Including uncommitted newly
created objects in the list is difficult as these must be woven
between the persistent ones at the correct sort order posi-
tions. The problem is further compounded by the fact that
within an overall transaction in freestyle GUI entry mode, the
user might launch another multiscreen process to enter a
new code and then decide not to commit this on the final
screen. Alternatively, if the user does decide to commit this
second process, it should be confirmed only into the world in
which the original (still yet uncommitted) objects live. Nested
transactions are required to support this, and apart from

being very tricky to program, they are arguably confusing to
the user as to which parts of the data are persistent and
which aren’t.

The following are two solutions that can be employed.
First, use a persistence framework. Several good ones exist

such as Cocobase, TopLink, or Solarmetric. If you want, you
can always roll your own framework, although be warned it’s
a tough task to undertake. The danger is that you’ll spend too
many cycles building your killer framework and fall easily
into the trap (as I once did in a previous life) of spending too
long polishing your silver bullet while losing focus on the
real business problem you’re trying to solve.

The second solution is the one that I find that in my older
years I tend to use more and more: solve a problem by avoiding
it. The freestyle mode of client GUIs works well for navigation,
but for data entry it keeps the user down a specific path. This is
essentially what wizards do with their back and next buttons
and a final “Finish” page, and it’s obvious to the user that by not
confirming, the final screen loses the whole process; and since
it’s modal there is no danger of having to merge objects into
ones that are read freshly from the persistent back end.

What is interesting about adopting a wizard or a rigid or

modal dialog style of data entry is that this is essentially what
a browser does. Instead of the server dealing with atomic and
essentially unpredictable requests for data updates, the scope
of what is being changed is predetermined and known to the
session. It is an easier programming model to deal with, and
the fact that the browser does it well doesn’t mean that tradi-
tional GUIs can’t adopt it as well. There is still a large func-
tional value that results from giving the user a client that can
perform local validation and has the high usability function
point that client windows offer; however, there is also a lot to
be said for simplifying the input programming model to be
based around a constrained workflow.

Several years ago I was with a customer who was building
an entire client application framework in Swing that was
being specifically designed to emulate a browser (complete
with back and forward buttons). The customer’s argument
was that their users were comfortable with the browser. While
I originally dismissed their project as dumbing down the
power of what a proper GUI could do, I think there’s a lot to
be learned by looking at the mechanics of how a browser-
based application does its persistence and using this session-
based programming model for more traditional clients.

Resources
• Cocobase: www.thoughtinc.com
• Solarmetric: www.solarmetric.com

Fine Grains
Choke the Client

Joe Winchester is a
software developer

working on WebSphere
development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

Joe Winchester
Desktop Java Editor

R

DESKTOP JAVA VIEWPOINT

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

What is interesting about adopting a wizard or a rigid or modal
dialog style of data entry is that this is essentially what a browser does”“

Co
py

rig
ht

 ©
 2

00
4

Su
n

M
ic

ro
sy

st
em

s,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

. J
O0

40
05

1.
 S

un
, S

un
 M

ic
ro

sy
st

em
s,

 th
e

Su
n

lo
go

, J
av

a,
 th

e
Ja

va
 C

of
fe

e
Cu

p
lo

go
, J

av
aO

ne
, t

he
 Ja

va
On

e
lo

go
, J

av
a

De
ve

lo
pe

r C
on

fe
re

nc
e,

 a
ll

Ja
va

-b
as

ed
 m

ar
ks

 a
nd

 lo
go

s,
 a

nd
 J2

SE
 a

re
 tr

ad
em

ar
ks

 o
r r

eg
is

te
re

d
tr

ad
em

ar
ks

 o
f S

un
 M

ic
ro

sy
st

em
s,

 In
c.

 i
n

th
e

U
ni

te
d

St
at

es
 a

nd
 o

th
er

 c
ou

nt
rie

s.

Sponsored by Produced by

June 28–
July 1, 2004
Moscone Center
San Francisco, CA

Everywhere starts here

JavaTM technology is everywhere, improving the digital experience

for everyone. It all starts at the JavaOneSM conference, your source

for cutting-edge knowledge and proven solutions. Discover from

the experts how to deploy Web services and connect the world

securely; you’ll learn to code simpler and faster, and bring higher

efficiency and profitability to your business.

The JavaOne conference offers hundreds of in-depth technical

sessions in:

• The Foundations: Core J2SETM Technologies

• Core Enterprise Technologies

• JavaTM Technology on the Desktop

• Dissecting the Implementation: Solutions

• Intriguing and Unexpected: “New and Cool”

• Java Technology for the Web

• Java Technology for Mobility

Save $200! Register by May 31, 2004,

and receive the Early-Bird price for the full

Conference package. Registration code: ADARZKND

Register at
java.sun.com/javaone/sf

Join James Gosling, the father of the Java Programming Language

52 April 2004 www.SYS-CON.com/JDJ

wing is a general and flexible library for drawing

graphical user interfaces. However, when trying to use

Swing components to draw nodes in a graph, generality

and flexibility have their limitations.

The Problem
We once worked on a project where we had to graphically

display the configuration and topology of a telecommunica-
tions network. From the user interface programmer’s point of
view, this task is similar to drawing a graph, that is, nodes
connected by links.

The user should be able to display as well as interact with
the graph elements – move them, zoom in or out, display a
pop-up menu, and so on. Our first thought was to use a
JComponent as the base for the graph elements. Swing can
take care of all the work we don’t want to bother with, such as
redrawing overlapping components and distributing the
events to the correct graph element.

Since our nodes were nothing more than a label with an
icon, we used the JLabel as a base class. Other Swing compo-
nents made our job easy. A comment could be represented by
a JTextArea, a table of attributes by a JTable, and links and
other objects were simple JComponents in which we could
override the paintComponent method.

This solution was quite easy and effective up to a couple
hundred nodes. However, as the number of nodes and the
complexity of the network grew, we quickly realized that
Swing would not scale to our needs.

The best and most spectacular example to demonstrate
Swing’s lack of scalability is the moving of a node. If you have
a small network of 20 nodes with a couple of links, you can
grab a node, move it around, and it will follow the mouse
pointer pretty smoothly. However, when you increase the
number of nodes, you start to notice a latency time between
the moment you initiate the move and the moment the node
actually starts to move. When your network reaches the size of
a real-life telecom network, the latency lasts over a couple of
seconds. If you keep moving the mouse pointer, the node will
try to follow it without ever managing to catch it.

Solutions
Use the Memory You Really Need

It turns out that JComponents are so general, they contain
a lot of variables and checks that are only overhead in our

case. We decided to avoid using JComponents for our graph
elements. In the same way that Swing uses the AWT Frame or
Dialog as its top-level container and then takes care of every-
thing else within the window, we use JComponent as our top-
level component and take care of everything else within its
bounds.

Stripping away everything that was unnecessary and keep-
ing only what we really needed, we came up with objects
optimized for our needs. We had the attributes we wanted to
use, and the methods had less overhead because we had full
control. This helped us counter one of the big problems of
Swing: in spite of its flexibility, there are a lot of things you
have no control over.

Table 1 compares the memory consumption of our graph
elements (using JDK 1.4.1).

Most of the objects on a given display were made of links
whose size was brought down to 256 bytes, less than a quarter
of the size of its Swing counterpart.

Memory can be saved by offering interfaces only to the
developer instead of an all-knowing base class. In this way,
just the necessary information will be saved in the elements,
and we get rid of any unwanted or unnecessary default
behavior.

Repaint Only What You Need To
The area in which Swing quickly reaches its limit is the

speed of the repaint. In our experience, Swing paints more
graph elements than it should. Some objects get repainted
even if their appearance was not modified, or if they were not
overlapped by an object that triggers a repaint.

When component X needs repainting (its color has
changed or it has changed location), Swing looks for other
components that also need to be repainted. To do so, it iter-
ates through all the siblings of X and checks if a sibling’s
bounds are intersecting with X’s bounds. If the bounds are
intersecting, it repaints this sibling and also checks if it inter-
sects with another one, creating a cascading effect of repaints.
You might say that objects are rarely that close to each other,
but we are drawing a graph of nodes connected with links.
Link objects propagate the repaint to a lot more objects than
you might think.

To cut short this cascading effect, simply avoid doing the
intersection checks for the siblings. This will modify the Z-
order of the elements in the graph, but this usually is an
acceptable effect for the users.

The other reason why Swing repaints too much is the use
of a rectangular shape as bounds for the components.

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

by David Shay and John Hutton

S

FEATURE

David Shay is a software
developer for Ericsson in

Hungary. For the past
five years he has worked

at building GUIs in Java
for telecom modelling tools.

david.shay@ericsson.com

John Hutton is as an
information specialist

for Horizon Technology.

john.hutton@thinkhcs.com

...and improving performance

ESCAPING SWING’S
LIMITATIONS

WHEN DRAWING GRAPHS

54 April 2004 www.SYS-CON.com/JDJ

FEATURE
H

O
M

E
D

E
SK

TO
P

C
O

R
E

E
N

T
E

R
PR

IS
E

Although most components you’d find in a user interface are
roughly rectangular, when you look at links, you’ll notice
that nothing is less rectangular than a simple line. A lot of
links get repainted because the intersection calculation
takes into account the entire rectangle containing the line.
It’s quite easy for two rectangles to overlap, even if their
diagonals do not.

If we are in control of everything, we can simply replace
the rectangle with something else, let’s say a shape or an
array of rectangles. We can even ask the graph element if it
intersects with a given rectangle, providing the developer
with a higher level of flexibility. This complicates the inter-
section calculation, but the slow operation here is the
repaint, and it’s worth the extra effort if we can avoid several
repaints.

An example of such a function in a Link element could look
like this:

public boolean intersectWith(Rectangle r)

{

return r.intersectsLine(fromX, fromY, toX, toY);

}

Control the Repaint Mechanism
The way Swing repaints is also an obstacle to optimization.

A repaint invariably starts with drawing a rectangle the size of
the component using the background color. This means that
whatever is behind it will be erased and need repainting. In
other words, whatever will be deleted will be added to the
repaint queue, causing further deletion and repaints. We pro-
pose implementing the repaint as a two-step operation: dele-
tion and drawing.

Instead of only one repaint queue, you can implement two
queues: a deletion and a drawing. Graph elements can decide
for themselves if they need to be deleted, redrawn, or both by
adding themselves to one or both queues.

Not all types of repaint operations require deletion. For
example, changing the color of a link needs only a repaint of
the link, not of the objects it crosses. This will paint the link
on top of the object it crosses, but again, modifying the Z-
order of the graph elements has to be an acceptable side
effect. Also, removing an element from the graph requires a
deletion operation only.

The drawing algorithm deletes only those rectangles stored
in the deletion queue, adding the objects they overlap to the
drawing queue (provided they are not already there).
Following that, the drawing queue is processed and all objects
are painted only once. These queues can also check for dupli-
cates, so that a deletion or a drawing needs to be processed
only once.

The best optimization that Swing offers for limiting
repainting is the clipping rectangle, but that also has a limit. If
you know the extent of what needs to be repainted, you can
give it as a parameter to the overloaded version of repaint.
However, in most cases it’s quite hard to know what exactly
will be repainted. If a node is moved, several links and attri-
bute tables may move too.

It’s not the job of the node to calculate the extent of
the clipping rectangle. This feature is better implemented
inside the Paint Manager, which already knows what it
is going to repaint. Going through the deletion and draw-
ing queue, it’s easy to find out what really needs to be
repainted. Once again, there’s extra work in calculating
the union of the bounds of all the graph elements, but
the savings at the end is worth the game. In some cases,
like zooming, when you know that everything will be
drawn, you can simply bypass this check and tell the
Paint Manager to draw everything without calculating
the clipping rectangle.

Repaint Only When You Need To
Another automation of Swing that makes operations

such as moving and zooming slower than they should
be is the repaint on standard operations. Changing the
size or location of a component provokes an immediate
repaint. If you consider that zooming requires changing
the location and size of all the elements in the graph,
you have an idea of how slow this operation can be
when each element repaints immediately upon its
change.

Every call to repaint costs a lot and these should be kept to
a minimum. Removing the Swing component from the
chain allows you to reduce this behavior.

Another benefit is the location and size information,
which is unnecessary for link objects. Links are just a line
drawn between two nodes. Where is the need for location
and size information? In the first version of our library,
when a node was being moved, it triggered the following
piece of code in the link element, which in turn triggered
two repaint events:

Rectangle bounds = new Rectangle (from.getX(), from.getY(), 0, 0);

bounds.add(to.getX(), to.getY());

setLocation(bounds.x, bounds.y);

setSize(bounds.width, bounds.height);

Now this piece of code completely disappears. Even
better, size and location can completely disappear from
some elements such as the links. Throwing away the
Swing components allows you to use absolute coordinates
when drawing your links, instead of having to draw from
(0,0) all the time. What good is this? Look at how simple
the code for painting a link becomes:

public void paint(Graphics g)

{

g.drawLine(from.getX(), from.getY(), to.getX(), to.getY());

}

Storing Your Elements
A Swing JComponent stores its children in a private

array. There is absolutely no control over what is going on
in this array, but sometimes you would like to be able to
store these components in another type of structure adapted
to your needs.

For example, when the user wants to select an element, it
would be faster to look through the graph if it were stored in
a quad tree. If you decouple the graph element container
from the component, you could choose the container that
suits your needs. You could handle ordering, apply filtering,
or offer a different search criterion. Once again, you have
complete control.Table 1 Memory consumption

Swing Component Size (bytes) Graph Element Size (bytes)
JComponent 490 DefaultObject 160
JLabel 706 DefaultNode 224
JTable 5027 AttributeTable 184
JGrLink* 1037 DefaultLink 256

* The JGrLink object is a home-made object deriving from JComponent.

55April 2004www.SYS-CON.com/JDJ

Other Optimizations
We’d like to finish this article with some optimizations

that can be made on every graph drawing application,
regardless of whether it uses Swing.

First, we mentioned several times the modification of
the Z-order of the objects, which is a side effect of the
drawing algorithm. Modifying the Z-order can actually be
ugly – if your links come in front of your nodes, for exam-
ple. If there are types of objects between which the order-
ing matters (like between nodes and links), it’s possible to
store your graph elements on different layers. Each layer
will have its own drawing mechanism, a buffered image
on which to draw, and a container of its own graph ele-
ments. It not only allows you to group like objects togeth-
er, but you can also ensure that your links will always
appear behind your nodes. Also, repainting a node will not
affect the links, as each layer computes its dirty bounds
separately.

For moving operations, an effective optimization is to
add an extra layer, which I call the glass layer. When mov-
ing several graph elements, you can transfer them to the
glass layer where they will be the only elements to be
repainted during a move. When the move operation termi-
nates, you can transfer the graph elements back to their
original layer.

Transferring objects between layers can be a slow opera-
tion because it requires a deletion from the original layer.
When moving an object, this deletion causes a delay before
the graph element can actually be moved on the glass layer.

One solution is to leave the elements on their original layer,
while a copy of the element is being moved on the glass layer.
When the move operation terminates, the deletion will occur
on all layers, keeping the slow operation for the end of the
move when the user is busy looking for his or her next action.

Finally, some graph elements can have quite complex
algorithms to draw. Of course, it’s possible to cache some
of the values in the renderer so that the drawing happens
faster. But the moving usually invalidates those caches,
and the algorithm will have to be applied all the time.
One solution is to replace the renderer on the fly with
a simpler one during a move operation. For example,
we had a link that was moving together with an arrow
showing in which direction the information was flowing.
Calculating the angle of the arrowheads is a complex
operation. While moving, the renderer was replaced
with another one, which represented the complex link
as a simple black line.

Where to Go from Here
In this article we covered some of the improvements

that can be made to Swing behavior to draw graphs more
efficiently. While you can manage to trick Swing in several
ways to get over some of these difficulties, in some cases
you’ll reach the limits.

Rewriting the painting and event distribution can be a
painful and long operation, but it is worth the trip. It pro-
vides performance improvement as well as control over
what is really going on under the hood.

56 April 2004 www.SYS-CON.com/JDJ

emote Swing or server-side Swing
– this is the most concise charac-
terization of Canoo’s UltraLight-
Client library (ULC). ULC offers

server-side peer classes for Swing. For
each Swing widget, there’s a peer ULC
class with essentially the same API.

The value added by ULC is the built-
in split between client and server: ULC
splits each widget into a client part and
a faceless server part, and synchronizes
these so-called half widgets at runtime.

The result is a client that’s rich but
thin, an idea that sounds puzzling
today, since we associate rich clients
with fat clients, and thin clients with
HTML-based poor clients.

Minimal Footprint
An important characteristic of ULC

is its minimal footprint. Despite the
fact that it’s a client/server technology,
it imposes neither a framework nor an
application server onto its user.

All infrastructural tasks are delegat-
ed to standard J2EE. The client relies
on native Swing, communication is
configurable as HTTP(S) or RMI over
IIOP, and the server half widgets may
run within a servlet or in an EJB con-
tainer.

Conceptually, ULC is just a smart
widget set. Its impact on an applica-
tion is limited to the presentation
layer. Programmers can employ their

technology of choice for business
objects, persistence, and other soft-
ware layers. The only constraint ULC
imposes is the thin client architecture.

Rich Thin Clients
ULC seeks to combine the benefits of

HTML thin client applications and fat
client productivity applications. Its
starting point is the J2EE architecture
with a server-side programming and
execution model.

This makes ULC applications con-
ceptually similar to HTML-based J2EE
applications: all the business logic and
the model of the presentation logic exe-
cute on the server. The client is a gener-

Peter Leitner is a team leader
and senior software engineer

at Würth Phoenix. He has
10 years of experience

developing object-oriented
ERP systems and online/offline

sales support systems.

peter.leitner@wuerth-phoenix.com

UltraLightClient

LABS

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

Reviewed by
Peter Leitner

R

by Canoo Engineering AG

Figure 1 DevelopmentRunner GUI

ic presentation engine, like a browser.
The difference between a browser and
the ULC engine is that the latter handles
descriptions of rich graphical user inter-
faces instead of HTML.

While not new, the concept of rich
thin clients has lost none of its appeal. It
promises state-of-the-art usability com-
bined with easy manageability and
operation.

Let’s see to what extent Canoo’s ULC
lives up to this promise.

Getting Started
Canoo’s offering includes:

• The core ULC library, currently v. 5.1.3
• A visual editor for the WebSphere

Studio Application Developer IDE,
currently v. 1.0 (an Eclipse version is
scheduled for Q2004)

• A load and performance testing tool,
currently v. 2.2

Installation is simple: you can either
extract the distribution archive or use
the platform-specific installer for
Windows, Linux, Mac OS X, or Solaris.
The distribution contains the ULC
libraries for the server container and
the presentation engine, a 250-page
developer guide, a client/server simula-
tor called DevelopmentRunner that
enables executing applications in a sin-
gle virtual machine, and the source
code for six sample applications.

The best way to start is to run the
sample applications, some of which are
available as online demos on the Web
site. To execute them on your own
machinery, either double-click their
launch scripts or drop one of the WAR
Files into your preferred application
server and invoke their start page within
your Web browser.

The ULC-Set example is a good point
of departure. It provides an overview of
all widgets available. Each widget sam-
ple is a click away from its source code.

Given the rich set of examples, the
familiar Swing API and the compre-
hensive developer guide, a Java engi-
neer will learn quickly. My experience
is that a programmer who knows Swing
and the basics of client/server com-
puting will be fully productive after a
few days.

IDE Integration
A nice feature of ULC is that it fits into

your preferred IDE. The only additional
tool you need is the Development-
Runner that comes with the library.

The DevelopmentRunner executes the
client and the server in a single virtual
machine, shortening the edit-compile-test
cycle. Using this tool is simple: just call it in

the main method of your application class:

public static void main(String[] args) {

DevelopmentRunner.setApplicationClass(<Your

ULC Main Class>);

DevelopmentRunner.main(args);

}

Since you can execute a ULC applica-
tion entirely within your IDE, debugging
and testing is easy. Your IDE’s debugger
and your favorite tools will all work.

For the purpose of monitoring inter-
action between client and server, the
DevelopmentRunner offers a dialog
window:

DevelopmentRunner.setUseGui(true);

This window displays the messages
exchanged and allows simulating differ-
ent bandwidths (see Figure 1). I like this
latter option because it enables me to
test the real-life behavior of my applica-
tion within my IDE.

If your favorite IDE is Eclipse or
WebSphere Application Developer, use the
drag-and-drop visual editor that comes as
an add-on product (see Figure 2). This edi-
tor corresponds almost exactly to the
Swing-based editors available for these
platforms. It generates Java and
reflects code changes back to the
user interface.

The somewhat privileged
positioning of Eclipse and
WebSphere is also documented
by the fact that the Develop-
mentRunner’s user interface is
integrated in their workbench.

Working with ULC
We’ve been working with ULC

for two years now and have
developed two applications. One
of them is WÜRTHPHOENIX CIS
(www.wuerth-phoenix.com), a
company information system
that is shown in Figure 3.
WÜRTHPHOENIX CIS supports
profit centers in their financial
reporting, planning, and projec-
tion. It was created by three
developers within 18 months,
and has been rolled out as a
standalone application and in a
hosting datacenter where it’s
serving over 280 companies
worldwide.

The second application we
developed is WÜRTHPHOENIX
ERP-Basic, an enterprise
resource planning (ERP) appli-
cation for small and medium-
sized companies.
WÜRTHPHOENIX ERP-Basic

57April 2004www.SYS-CON.com/JDJ

Kirschgartenstrasse 7
CH-4051 Basel, Switzerland
PPhhoonnee:: +41 61-228-9444
WWeebb:: www.canoo.com

PPllaattffoorrmm:: Any platform that supports the Java
Runtime Environment 1.2.2 or later
JJVVMM:: Java Runtime Environment 1.2.2 or later
JJaavvaa AApppplliiccaattiioonn SSeerrvveerr:: Any J2EE compliant
servlet and EJB container

PPrriicciinngg::
• UULLCC LLiibbrraarryy:: $1,495 per developer. Includes an

unlimited runtime license and all configura-
tion options (deployment in servlet, EJB con-
tainer, or standalone, with HTTP(S) or
RMI/IIOP).

• VViissuuaall EEddiittoorr:: $499
• UULLCC LLooaadd:: $3,000

Sun JRE 1.2.2/1.3.1/1.4.1/1.4.2.
Windows 2000/XP, Red Hat Linux, and Solaris.
BEA WebLogic, IBM WebSphere Application
Server, JBoss, and Tomcat

Canoo Engineering AG

Specifications

Test Platform

Google, the world leader in large-scale information retrieval, is
looking for experienced software engineers with superb design
and implementation skills and considerable depth and breadth in
the areas of high-performance distributed systems, operating
systems, data mining, information retrieval, machine learning,
and/or related areas. If you have a proven track record based on
cutting-edge research and/or large-scale systems development
in these areas, we have plenty of challenging projects for you in
Mountain View, Santa Monica and New York.

Are you excited about the idea of writing software to process a
significant fraction of the world's information in order to make it
easily accessible to a significant fraction of the world's population,
using one of the world's largest Linux clusters? If so, see
http://www.google.com/cacm. EOE.

58 April 2004 www.SYS-CON.com/JDJ

LABS
H

O
M

E
D

E
SK

TO
P

C
O

R
E

E
N

T
E

R
PR

IS
E

supports purchasing, planning, order
management, and logistics, including
inventory accounting as well as report-
ing and statistics. Ten developers com-
pleted it within 14 months.

For development, we use PCs with
Windows 2000, running Eclipse 2.2.1, JDK
1.3.1, and ULC’s DevelopmentRunner. An
integration server and testing server
round off our setup. They’re running
Windows 2000 and Linux Red Hat AS 2.1,
respectively, with Jakarta Tomcat 4.1.29.

Our experience is that developing
with ULC is indeed similar to working
with Swing. The benefit as compared to
Swing is that you essentially get a J2EE-
compliant client/server application for
free. The only client/server-related
issue you need to remember is that
your application runs in a multiuser
and multithreaded environment:
1. Avoid using static variables, because

they’re not thread-safe. Instead, man-
age objects in your server session, like
in HTML/servlet applications.

2. There is the option to communicate
between sessions. You can, for example,
realize a notification mechanism that
propagates data changes to all sessions.

3. When opening a modal dialog window,
the thread won’t wait as in Swing. As a
consequence, set up a listener that
reacts to the action closing the dialog.

A positive surprise for us was the
scalability of ULC’s thin client solution:
the built-in minimization of
client/server communication and the
economic use of memory on the server

work well for us. They enable our users
to work over a worldwide VPN or over
the Internet, sometimes connecting
with slow modem lines, and to use a
cost-effective server infrastructure.

A further important point for us is
manageability of releases and produc-
tion. Our applications run on a variety
of platforms, for different customers. On
the client side, the 350K presentation
engine runs under Windows NT, 2000,
and XP as an applet and a standalone
Java application distributed with JNLP.
On the server side, the applications run
on Windows 2000, NT, XP, and Linux AS
2.1. ULC’s J2EE compliance and the fact
that it runs on any JDK from 1.2 upward
enable us to support this wide variety
with a single code base.

Extending ULC
It’s possible to extend ULC to support

new kinds of widgets and data objects.
Example extensions are special value
formatters for text fields, specific
enabling strategies that are needed on
the client, or widgets supporting graphic
functions. There’s an extension API that
we’ve used to develop a special table
widget. Unfortunately, the code samples
of the distribution contain only one such
extension. I wish that Canoo included
more of them, or, better, offered a com-
munity service for the exchange of add-
ons and code snippets.

Performance
ULC employs a number of techniques

to minimize round-trips and communica-

tion, including local validation, lazy load-
ing, caching, and compression of mes-
sages. Yet, the performance of an applica-
tion never depends on its presentation
layer alone. What counts is end-to-end
performance, and this has to be measured
individually for each application.

Canoo offers a tool for end-to-end
testing, called ULC Load. With this tool
you can record user interactions and
replay scenarios in parallel to simulate
any number of users. You can then
measure response time and bandwidth.
Furthermore, you can export the results
for analysis. We found this tool to be
simple and useful. It allowed us to test
efficiently, and helped in the sizing of
the production environment. Regarding
performance, in our experience ULC was
never the bottleneck in an end-to-end
test run.

Summary
ULC is a lean but effective technolo-

gy: you develop as if Swing widgets
were running on the server. You have a
homogeneous, server-side program-
ming model, and get a scalable
client/server application you can
deploy in any J2EE environment.

This is doubtlessly one of the most
efficient ways to realize rich client busi-
ness applications, in particular if you
can share the J2EE infrastructure with
HTML-based applications, thereby elim-
inating the need for developing a sepa-
rate solution for functions like security,
logging, load balancing, or monitoring.

There are, of course, limitations. If an
application needs more than the stan-
dard widgets offered by Swing, there is
no out-of-the-box solution. For such
cases ULC needs to be extended, typical-
ly by integrating third-party widgets or
components.

Figure 2 ULC Visual Editor

TTaarrggeett AAuuddiieennccee:: Software developers
LLeevveell:: Intermediate to advanced
PPrrooss::
• Simplifies rich client development for

client/server apps
• Small footprint, optimized client/server

communication
• Deploys easily in many configurations
• Standards-based (J2EE, J2SE)
• Integrates with existing Web infrastructure
• Attractive pricing; no runtime license fees
CCoonnss::
• Few out-of-the-box widgets beyond those of

Swing
• Use of third-party graphics libraries possible

but requires integration

Snapshot

59April 2004www.SYS-CON.com/JDJ

JDJ Ranks No. 1 in the World in Digital
Magazine Circulation Among All
Magazine Titles
(Montvale, NJ) – SYS-CON Media, the
world’s leading i-technology magazine
publisher, has announced that its flagship
print magazine, JDJ, ranked number 1 in
the world in digital circulation delivery.
JDJ’s most recent six-month average cir-
culation was 162,000 copies, of which
43% was requested by its subscribers to
be delivered digitally. JDJ’s monthly digi-
tal edition is an identical replication of its
print edition, and SYS-CON’s advertising
partners enjoy an incredible bonus expo-
sure beyond its 60,000 rate base, which
has not been increased since JDJ’s first
issue.

Circulation Management Magazine
reported on March 9, 2004, that “JDJ is lead-

ing the way with 69,776 digital
only subscriptions, or 43.1 per-

cent of its total qualified circulation of
162,091, according to an analysis by The
Circulator” (http://circman.com/ar/market
ing_java_developers_journal/index.htm).

According to an M10 Report article writ-
ten by Ted Bahr, “The top ten digitally
delivered magazines are all tech titles, with

JDJ, published by SYS-CON
Media, leading the pack with 43

percent of its file delivered digitally”
(www.m10report.com/html/227.asp).

Teamstudio Releases Edition 5 of
Java Tools Suite
(Beverly, MA) – Teamstudio, a provider of
agile software tools for application develop-
ers, has announced the release of Edition 5
of its Teamstudio for Java suite, which intro-
duces a new Java development tool,
Teamstudio Thread Profiler. It also delivers
new enhancements to existing tools in the

suite: Teamstudio Analyzer
for Java, Teamstudio
Memory Profiler, and

Teamstudio Performance Profiler.
www.teamstudio.com

LISA 2.0 Automated Testing
(Dallas) – iTKO, Inc., an enterprise
software development tool provider,
has announced a testing breakthrough
to ensure that companies can deploy
Web services with confidence. LISA can
uncover and report the exact source
of any Web service problems stemming

from Web and app
servers, network trans-
mission, database

storage and retrieval, middleware,
other applications, and attached
components all the way down to the
most granular Java and XML code
level.
www.itko.com

Phone:
Fax:
E-mail:
Web:

Platforms:

Test Machine 1:
Test Machine 2:

Target Audience:
Level:
Pros:

Con:

Industry News
M10 Report ranks the top 10 magazines as follows:

162,019 69,776 43.1%
eWeek 422,600 57,500 13.6
NASA Tech Briefs 195,405 23,948 12.3
Network Magazine 200,000 12,788 6.4
SD Times 51,443 11,879 23.1
Design News 170,243 11,487 6.7
Microsoft Certified Professional 111,834 9,933 8.9
EE Times 153,823 6,323 4.1
Wireless Week 31,730 4,627 14.6
Control 70,050 3,967 5.7

SOURCE: BPA International publisher’s statements. NOTE: Under BPA International rules, a subscriber who has opted to receive both the print and digital editions of a publication is
reported only once and counted only once within that and the corresponding % of total qualified circulation of those combined subs are provided only for
informational purposes. 32,320 JDJ subscribers receive the magazine both in print and in its digital edition, but counted as only one within the magazine’s qualified circulation numbers.

60 April 2004 www.SYS-CON.com/JDJ

t’s unnecessary but true: a lot of
Java programmers still debug by
putting System.out.println() state-
ments in their code to find out

what the program is really doing and
where the problems are. To overcome
this antiquated approach I’ve tried
several debuggers: Sun’s JDB is free but
cumbersome and hard to work with.
Visual SlickEdit, my favorite IDE, has
integrated debugger support but is
also difficult to run. Metamata debug-
ger was my next choice but the prod-
uct went away. So I searched the Web
for options and, indeed, there is a bet-
ter way: RetroVue from VisiComp. It
creates a complete journal of your
program’s execution, letting you go
back to any previous instance and
examine the state back then. These
features and some articles about
“Omniscient Debugging” aroused my
interest in RetroVue.

In this article I try to explain the dif-
ference between RetroVue and other
debuggers. Then you, the reader, can
decide if it’s worth paying $995 for it.

Omniscient Debugging
RetroVue is built on the concept of

Omniscient Debugging. The idea is to
collect operations at each “point of
interest” (setting a value, making a
method call, acquiring/getting a lock,
throwing/catching an exception) in a
program and then allow the program-
mer to use those events to explore the
history of the program. A free (GPL)
experimental debugger called ODB
(written by Bill Lewis) is an implemen-
tation of this idea (www.lambdacs.
com/debugger/debugger.html).

VisiComp Inc.’s software analyzer
RetroVue 1.1 is a full-fledged product,
also written in Java, with a strong
graphical user interface based on Sun’s
Swing library. It works by inserting
byte codes into the application’s class
files. This code collects information on
each point of interest as mentioned.
Collected events or operations are
stored in a log (RetroVue calls it a jour-

nal file) and then displayed in GUI. A
programmer can use the GUI to review
the behavior of objects, variables, and
method calls. This means that you see
which values are bad, find out where
those values came from, and who set
them and why. This also means that
there are no nondeterministic prob-
lems. You don’t have to guess where
the problems might be; you don’t have
to set breakpoints; you don’t have to
wonder which threads ran when; and
you don’t ever have to repeat a pro-
gram run.

Where Am I? – Breakpoint Debuggers
and Flight Recording

With traditional debuggers the pro-
grammer generally only knows that
the program is stopped at a given
breakpoint, but not the states leading
up to the break. Omniscient
Debugging can solve this problem.
RetroVue is characterized by VisiComp
as a “Total Recall Debugger” for Java
developers. This hints at where the
tool is positioned in the software life
cycle: early in the development phase.
There are other “flight-recorder” tools
like RootCause (www.ocsystems.com/
prod_rootcause.html), designed to
simplify tracing and data collection in
a post-development environment, i.e.,
in the production environment. Once
an application transitions to testing,
integration, or QA, development tools
are no longer appropriate. They place
too much load on the system. That’s
true for RetroVue because RetroVue
logs and gathers data from nearly all
aspects of the Java app’s execution.
There is a lot of similarity in the
underlying technology but RetroVue is
intended to be a developer’s tool, to
be executed in the development envi-
ronment. The price the developer has
to pay is performance, i.e., RetroVue
slows down execution and perhaps
needs an additional disk for its journal
file. This is because RetroVue works on
a disk-based model rather than a
memory-based one. The current ver-

sion of the product only loads what it
needs into memory, chucking what’s
no longer necessary to make room for
stuff that becomes needed as the user
examines further events. However, the
bigger the journal file, the larger the
amount of information that’s required.
RetroVue can work with huge journal
files where the actual limit depends on
the particulars of the journal file con-
tents. Of course, if the size of the
working set exceeds the actual RAM
in your machine and the underlying
virtual memory subsystem is heavily
utilized, performance will drop off
rapidly. Thus RAM does really matter
and I recommend having at least
512MB.

Klaus Berg is a principal
engineer with Siemens AG,
Munich, Germany. He has

worked for years as an architect
and implementor in Java GUI

development projects with
Swing and Java Web Start.

Now he develops server-side
J2EE intranet applications but

from time to time he comes
back to the Java desktop.

klaus-peter.berg@siemens.com

RetroVue 1.1

LABS

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Reviewed by
Klaus Berg

I

by VisiComp Inc.

6630 Highway 9
Suite 103
Felton, CA 95018
WWeebb:: www.visicomp.com
PPhhoonnee:: 831 335-1820
FFaaxx:: 831 335-7038

PPllaattffoorrmmss:: Windows, Unix, Linux,
Mac with JDK 1.3+
PPrriicciinngg:: $995 per developer

Fujitsu-Siemens PC Scenic W600 with Intel
Pentium 4 3,06GHz processor with 1GB RAM.
Windows XP Professional SP 1.

VisiComp, Inc.

Specifications

Test Platform

TTaarrggeett AAuuddiieennccee:: Java programmers and developers
LLeevveell:: Beginner to advanced
PPrrooss::
• Easy installation
• Powerful and intuitive GUI
• Easy to learn
CCoonnss::
• Not targeted at server applications
• No filter capabilities
• No instrumentation of Java classes

Snapshot

61April 2004www.SYS-CON.com/JDJ

Facts and Features
As mentioned before, RetroVue instru-

ments your Java byte code, either on the fly
as the program is running or offline from
the command line. Unlike conventional
debuggers, RetroVue keeps track of every
operation executed by your program. By
maintaining a complete journal of every
assignment to every variable, each method
invocation and return, each thrown and/or
caught exception, each thread switch, each
lock operation (e.g., when executing syn-
chronized methods, etc.), RetroVue allows
you to scroll forward and backward in time
and lets you examine the state of your pro-
gram at any given instant. Its powerful and
intuitive Swing GUI lets you scroll time as
easily as you scroll text in an editor. The
GUI is based on VisiComp’s visualization
software, which uses proprietary algorithms
to show the mechanics of Java programs in
a graphical format that displays the state,
execution, and thread interactions of pro-
grams. The main screen is divided into dif-
ferent optional views. I used RetroVue on
two different machines, one with a 15"
monitor. My experience is that an 18" or
19" monitor is better suited for making all
the interesting views visible at one time
without the need for scrolling or resizing
some panes.

The following panes are available (some are
shown in Figure 1).
• Class Browser: To view and navigate the

class hierarchy of your program. Only those
classes currently loaded are accessible so
you can’t waste time looking for a bug in
unused code.

• Search Results: Displays the results of
search requests performed via a popup
menu accessible in various other views.

• History View: Displays a “log” of every
operation produced by the program
being debugged. Change the variable his-
toryview.showSequence Num=true in
RetroVue’s properties file (contained in
retro.jar) to display event or operation
numbers too. Perhaps this will be possi-
ble via the GUI Option menu in the
future.

• Data View: The data for the current or
selected method invocation frame. If the
program being debugged was compiled
with “-g”, then the local variable names will
be shown. If “-g” was not used to compile
the program, the local variables’ slot num-
bers will be used.

When faced with a null pointer excep-
tion, RetroVue’s “Show Previous
Assignment” command in the data view
makes it trivial to go back to the exact point
where the variable was assigned a null
value. By hopping backward in this way, it’s
easy to get from the manifestation of the
bug (the symptom) back to when and
where the problem actually occurred (the
cause).

• Messages: Displays output, if any, from the
program currently being debugged by
RetroVue.

• Source View: Provides the text of the source
files for your program. Source views will
only appear if the Source Path preference
was set when the program was launched
under RetroVue. The Source View consists of
different source viewers, one viewer for each
source file being viewed. Each viewer is
divided into two portions: the gutter and the
text area. The user may set a breakpoint
next to a line of code by clicking in the gut-
ter. This breakpoint is a stopping point
when navigating through the history view
(see below).

• Thread View: Displays the chronological
sequence of the information produced by
your program, organized by thread. It pro-
vides a “high-altitude” overview of your
program’s information, rather than the
detailed information provided by the
History View. In the timeline at the top of
this view, the numbers correspond to the
same event ID numbers shown in the
History view (when you have set the prop-
erty historyview.showSequence Num=true).

The colored bars show the activity
within a particular thread and certain
interactions between threads. Multiple
threads contending for more than one
lock can lead to a programming bug
known as deadlock,
which is more techni-
cally defined as a
“cyclic lock dependen-
cy.” RetroVue auto-
matically detects this
condition and alerts
you with a skull and
crossbones icon.
Figure 2 gives you an
impression of the
Thread View.

Navigation Through Time
In addition to finding

bugs, RetroVue lets you
validate the expected run-
time behavior of your pro-
gram. You no longer have
to insert println state-
ments or set breakpoints
to verify that your pro-
gram is doing what it is
supposed to do. Instead
navigate through the
History View using com-
mands like “Play,” “Step
over,” “Step out,” “Step
into,” or “Rewind”. A
rewinding facility like this
has never been an issue in
traditional “breakpoint”
debuggers, so you have to
learn a new “methodolo-
gy” of debugging.

Installation and Getting Started
Installation of RetroVue is just a matter

of seconds: download the appropriate
installation file for your platform (for
Windows, Unix, Linux, or Mac). Uncom-
press the file with a decompression utility
like Winzip or tar in a directory of your
choice. That’s it. You can then modify
your program’s start statement and
RetroVue automatically comes up if your
program exits (under normal and exception
conditions; but if you cancel your program
using CTRL+C or something similar you
have to bring up RetroVue from the com-
mand line).

Modify your run statement as follows:

java -jar <retro-dir>\retro.jar -journal <journal-

file> -sourcepath <source directory> -exec -cp

<classpath> -D<properties> <your-main-class> <pro-

gram arguments>

Besides the command-line launcher,
RetroVue comes with a GUI launcher that
serves as a front end to RetroVue’s command-
line options.

The documentation is provided as an
HTML manual. It’s enough for getting started,
but I would prefer an additional “How to” sec-
tion that describes some typical procedures
when using RetroVue for different debugging
problems.

62 April 2004 www.SYS-CON.com/JDJ

Current Limitations and
Future Enhancements

The current version, RetroVue 1.1.12, is
not really intended for Java enterprise
applications (RetroVue Enterprise Edition
is on their schedule), but there are situa-
tions when you can use it even there. If
you examine the run statement above
you’ll see that you can analyze part of
your J2EE Web app if it’s started as a
process in its own JVM! Version 1.1.12 of
RetroVue can only be used for post-
mortem debugging and analysis of an
already-executed program. Future ver-
sions are being planned to allow interac-
tive debugging of a running program.

Another limitation is that Java sys-
tem classes like java.util.Properties are
not augmented or tracked. This will be
addressed in a subsequent release.

What I miss the most is a filter capabil-
ity and a “Start/Stop-Recording” facility
as in CPU-profiling tools. Adding another

feature would be quite easy: changing the
Swing GUI’s look and feel. I’m not happy
with the current Sun Metal L&F and I can
imagine other users would also prefer
having another choice. VisiComp’s sup-
port team told me that all these wishes
were on their list for future releases.

Summary
VisiComp’s RetroVue debugger was

featured in a James Gosling JavaOne
2002 keynote. Sun Microsystems vice
president, distinguished engineer, and
creator of Java said: “The work the folks
at VisiComp have done is truly spectacu-
lar. It has a strong opportunity to dra-
matically improve the software develop-
ment process.”

I think if you are looking for a new
debugging concept you should spend the
time and money and try VisiComp’s
RetroVue debugger. If you’re not fully sat-
isfied – they give you a 30-day money-

back guarantee (for certified users there is
an evaluation copy available, too). Using
RetroVue I was able to fix some horrible
bugs in our J2EE Web app that uses an
embedded Tomcat Server with different
JVMs, each running different threads. I
had to analyze a 38MB RetroVue journal
file, but there were no problems with the
program performance or the “speed”
when loading the log file and working
with RetroVue’s GUI. However, I used a
high-end PC running Windows XP with
3.1GHz CPU, lots of disk space, and 1GB
of memory. As with a lot of tools: the
more memory you have the better for
RetroVue, but you don’t have to adjust
your java -Xms –Xmx options; this is done
by RetroVue behind the scenes. On my
home PC running Windows 2000 with
800MHz and 256MB memory, things
looked a little bit different. It took about
four minutes to load the 38MB journal
file, and navigating in the GUI was signifi-
cantly slower than on my high-end PC.
The reason is simple: the total memory
consumption was more than 500MB,
although RetroVue’s java.exe took only
48MB! Nevertheless, if you plan to use
RetroVue with large log files, consider
investing in at least 512MB memory. But
having done so, debugging is fun!

LABS
H

O
M

E
C

O
R

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

Figure 2 RetroVue’s Thread View

Figure 1 RetroVue GUI with different panes

Contact | Carmen Gonzalez: carmen@sys-con.com or 201 802.3021

Carmen Goon
Senior VP Marrk

Oops, we did it again!
JDJ No. 1 in the World

Top 10 Publications Ranked by Volume
 of Digital Subscriptions June 2003

 N
et

w
or

k
M

ag
az

in
e

 S
D

 T
im

es

 D

es
ig

n
N

ew
s

 M
ic

ro
so

ft
C

er
tif

ie
d

P
ro

fe
ss

io
na

l

E
E

 T
im

es

 W

ire
le

ss
 W

ee
k

C
on

tr
ol

E
W

ee
k

N
A

S
A

 T
ec

h
B

rie
fs

J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J
J
D

J

Source: BPA International publisher’s statements
Note: Under BPA International rules, a subscriber who has opted

reported only once and counted only once within that and the
corresponding % of total qualified circulation of those combined
subs are provided only for informational purposes.

64 April 2004 www.SYS-CON.com/JDJ

elcome to the April edition
of the JCP column! Each
month you can read about
the Java Community

Process: newly submitted JSRs, new
draft specs, Java APIs that were final-
ized, and other news from the JCP. In
this month’s column I’m focusing
mostly on one new JSR.

Java Is a Platform
The above is an often-heard

description when talking about this
technology. While many Java develop-
ers may first think of the Java pro-
gramming language, what makes this
technology successful is not only the
niceties of the programming lan-
guage but the richness of the class
libraries and the presence of a virtual
machine that can run anything as
long as “anything” consists of valid
bytecodes: the platform aspect. The
virtual machine doesn’t worry much
about how those bytecodes that it’s
asked to execute came about. From
very early on in the life of the Java
technology, there have been efforts to
run programs written in other pro-
gramming languages in the Java run-
time environment.

Nowadays most Ada programs are
compiled to Java bytecode. You can
compile COBOL to run on a Java run-
time environment if you so wish.
More recently, there have been other
efforts related to new languages such
as Ruby and Python where developers
have created Java versions, respec-
tively, JRuby and Jython. The JCP rec-
ognized the use of scripting lan-
guages in the J2EE technology envi-
ronment last summer and is currently
working on a JSR to provide scripting
languages, such as PHP access to Java
objects. This is JSR 223. Now, there is
a new JSR that explores an altogether
new angle.

A JSR for the Groovy
Programming Language

Submitted by Geir Magnusson and
Richard Monson-Haefel, and to be led
by James Strachan and Richard, JSR 241
is on the JSR Review Ballot. The goal for
this JSR is to standardize the specifica-
tion for the Groovy programming lan-
guage so that platform implementers,
tool vendors, and others can provide
compliant implementations for their
developers to use with the Java plat-
form. Groovy is based on J2SE 1.4. In

the words of the submitters: “Groovy is
a complement to the Java program-
ming language. Where the Java pro-
gramming language is exacting, Groovy
is expedient. Where the Java program-
ming language is extensive, Groovy is
convenient.”

I asked James Strachan via e-mail
how Groovy came to be. James
explained that last summer he
observed that several Java developers
were intrigued by features found in
new languages like Ruby and Python.
These are great scripting languages to

write the glue that holds enterprise
applications together. While they are
very useful, James felt that what was
missing was a language that provides
access to the J2SE and J2EE APIs for
this purpose. That is the API set that
the developers are familiar with, and
Java developers will want to retain
their investment in learning these APIs
and the development tools that sup-
port them. And so Groovy was born. It
began as an experiment to see
whether a Ruby-like language could be
compiled to bytecodes and use the
Java runtime environment without
wrapping Java objects but it quickly
gained a lot of momentum, and now
Groovy has many of the typical script-
ing language features in a very Java-
like syntax.

To check out the JSR, go to http://
jcp.org/jsr/detail/241.jsp. To learn
more about the Groovy programming
language, visit http://groovy.code
haus.org.

And in Other News
For this month’s edition of the JCP

column I’d like to draw your attention
to two JSRs that recently went final.
JSR 127, the JavaServer Faces specifi-
cation, is final. This specification sim-
plifies the creation and maintenance
of user interfaces for server-side
applications. It provides a richer
graphical composition than is possi-
ble with just servlets or JSPs. And to
close, the J2ME Web services specifi-
cation, or JSR 172, has also completed
its JCP process. It delivers two option-
al packages so that nontraditional
devices can process XML and make
use of and interoperate with Web
services.

That’s it for this month. I’m very
interested in your feedback. Please e-
mail me with your comments, ques-
tions, and suggestions.

From Within the
Java Community Process Program
The ‘groovy’ JSR

JSR WATCH

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Onno Kluyt

Onno Kluyt is the
director of the

JCP Program
Management Office,

Sun Microsystems.

onno@jcp.org

W

Coming this SPRING!

LOOK FOR YOUR FREE...

© 2004 SYS-CON MEDIA. ALL RIGHT RESERVED. ALL BRAND AND PRODUCT NAMES USED ARE TRADE NAMES, SERVICE MARKS, OR TRADEMARKS OF THEIR RESPECTIVE COMPANIES.

66 April 2004 www.SYS-CON.com/JDJ

MAX: A Java-Based
Personal Robot Platform

@ THE BACKPAGE

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Paul J. Perrone is an
architect, author, and

speaker on Java, J2EE, and
XML via Assured

Technologies, Inc.
(www.assuredtech.com).

Paul founded Assured
Technologies in 1998 and

has more recently founded
Perrone Robotics, Inc.,

(www.perronerobotics.com)
to focus attention on the

vertical space of software
for robotics.

pperrone@
perronerobotics.com

hen you mention the word
“robot,” most people think of
either large industrial bots that
do heavy work on factory

floors, suicidal bots doing battle on TV,
fanciful R&D bots gracing the labs of uni-
versities, or simple hobby bots of the
LEGO Mindstorms ilk. Don’t get me
wrong, all such creations are deeply fasci-
nating to me and embody tremendous
ingenuity and engineering craftsmanship.
However, I want a robot that I can make
do a variety of things around the house or
place of business, one that won’t cost a
small fortune and is flexible and evolvable
enough that I’m not stuck with a robot
constrained to accomplishing a single
task. Essentially, I want something that
doesn’t exist. I want the “Personal Robot.”

Despite what may have been perceived
as blind fantasy, a few years ago I set
about pursuing the construction of a per-
sonal robot. I had a formal background in
all of the requisite engineering skills
including robotics and AI, but they were
festering on my brain’s vines of unused
knowledge. My years spent doing work
that actually generates rather than con-
sumes money thrust me into the world of
more commercially viable enterprise
technologies and products. However, I
began to see more and more of a possibil-
ity of fusing the commercial-grade work I
was doing with my robotics R&D to yield
a robotics platform that was cheap yet
sophisticated. I wouldn’t need to mort-
gage my house to buy a platform that only
the wealthiest of companies or agencies
could afford, and I wouldn’t be stuck with
a constrained hobby bot that could
maybe flicker a few lights and fall down
the stairs. Instead, I’d commence building
a platform that was based on open source
and commercial-grade products, be able
to integrate with an assortment of under-
lying useful mechanical hardware compo-
nents, and provide myself with an open
sandbox and playground in which I could
develop a wide variety of robotics apps.

I scrambled to give this platform a
name and requisite acronym and could
only muster the three letters M-A-X. MAX
stands for Mobile Autonomous X-Bot.
The mobile and autonomous part should

be obvious, but the X-Bot represents the
fact that the bot would be a generic plat-
form atop of which I could do cool things.
X is a variable. Get it? Just plug whatever
application you want into the MAX plat-
form and that is what X becomes. Armed
with a name and an acronym, I was ready
to crank up the R&D a notch and began
forming a company around said efforts.

There is a plethora of hardware com-
ponents on the market useable in robots
ranging from the capriciously cheap to
the stylishly pricey. To create MAX in
such a way that would make it easy to
work with this varied hardware, we
defined a Java-based abstraction layer to
interface with such devices. This was a
key design feature since as you create or
load different robotics applications into
MAX, you may also require different
robotics hardware to support your appli-
cation. Our design thus called for plug-
and-playability achieved by either cus-
tom configuration of a few generic driv-
ers or by creating drivers specific to the
hardware device being utilized.

As a Java zealot, everything I aim to do
is in Java. If I could Java-enable my nose-
hair trimmer, I’d do it. Blind loyalty to
programming languages aside, I naturally
think there are genuinely good reasons for
using Java to build robotics applications.
Apart from its simplicity as well as operat-
ing system (OS) and computing hardware
independence, the wide range of built-in,
commercial, and open source tools readi-
ly available make it an attractive and low-
cost platform for cranking out robotics
apps. Thus, we were hell-bent to try and
use a standard J2SE runtime operating on
Linux (or any other OS) running on a
standard CPU for our underlying plat-
form. In fact, this standard JOC (i.e., Java-
OS-CPU) platform is indeed the only plat-
form required by MAX for a wide range of
robotics applications.

With a standard JOC platform, MAX
communicates with external robotics
hardware devices via Java-based inter-
faces to standard parallel, serial, and USB
computer ports. For certain devices like
digital cameras, the physical connectivity
is easy since most cameras plug directly
into a USB port. To interface with certain

other sensor and actuator types, such as
IR sensors and DC motor-driven wheeled
bases, a few extremely simple and low-
cost hardware connectors are used to
bridge between standard computer ports
and external robotics hardware.

For certain sensors and actuators, a
more real-time interfacing approach is
required; a standard JOC platform won’t
cut it here. Hence our MAX design
required an augmentation to work with
a J2ME-based, real-time Java embedded
JOC platform. A few reasonably priced
platforms on the market exist with
some even built around the aJile Java-
based processor core executing Java
instructions in hardware.

For a certain range of applications, the
embedded JOC platform and MAX pro-
file will be all that is needed to perform a
variety of basic robot functions. For
other applications, a standard JOC plat-
form and MAX profile will be required
for more sophisticated applications that
perhaps require access to large amounts
of persisted data or communication with
multiple distributed services, or need to
implement more complex planning
algorithms. Yet another alternative is to
use a standard JOC MAX profile for the
more complex data, communication,
and planning operations and leverage
use of the embedded JOC MAX profile
for the sense-actuate functionality inside
the same physical bot.

The MAX software and hardware
bridges are designed with maximum flex-
ibility for allowing a choice of underlying
hardware while providing open and con-
figurable interfaces for building robotics
applications that use and drive such
hardware. While a growing suite of MAX
components is being built and proto-
typed with a mixture of hardware
devices, the real test will come when we
start shipping MAX hobbyist and devel-
oper’s kits. Only then will we all see what
sort of community grows to extend MAX
and satisfy the “X equals to” equation,
making bots and applications that do
things we’ve always dreamed of and have
yet to dream of doing for ourselves and
organizations in an open, extremely low-
cost, and constraintless fashion.

W
Paul J. Perrone

SPEND LESS TIME PROBLEM SOLVING… AND MORE TIME DEVELOPING APPLICATIONS.

Join The Thousands of Companies Improving Java Application

Performance with Quest Software.

Whether it’s a memory leak or other performance issues,

Quest Software’s award-winning Java products — including

JProbe® and PerformaSure™ — help you spend less time trouble-

shooting and more time on the things that matter. Quest’s Java

tools will identify and diagnose a problem all the way down to

the line of code, so you no longer have to waste time pointing

fingers or guessing where the problem lies. Maximize your

team’s productivity with Quest Software by downloading a free

eval today from http://www.quest.com/jdj _java.

PerformaSure — a system-wide performance
diagnostic tool for multi-tiered J2EE applications
running in test or production environments.

JProbe — a performance tuning toolkit
for Java developers.

© 2004 Quest Software Inc., Irvine, CA 92618 Tel: 949.754.8000 Fax: 949.754.8999

